
Algorithms for Programming Contests - Week 1

Pranav Ashok, Michael Blondin, Philipp Meyer, Christian Müller,
Gregor Schwarz

conpra@in.tum.de

18.10.2017



Algorithms for Programming Contests - Week 1

Judge

Official DOMjudge System

• In use for programming contests such as the GCPC or the ICPC.

• On the web:

TUMjudge

https://judge.in.tum.de

https://judge.in.tum.de


Algorithms for Programming Contests - Week 1

Judge

Registration

• Registration necessary.



Algorithms for Programming Contests - Week 1

Judge

Login

• Authentification necessary.

• Works with LDAP and is identical with the login to the computer
lab (“Rechnerhalle”).

• Login is “name” in name@in.tum.de.
• Password is the corresponding password.

• Forgot your password and want to change / reset it?
• Get in contact with the RBG, not with us!



Algorithms for Programming Contests - Week 1

Judge

Overview

The overview page shows several pieces of information:

• the personal scoreboard of the current contest,

• an overview of already submitted programs,

• an overview of clarifications (more on that later on).



Algorithms for Programming Contests - Week 1

Judge

Overview



Algorithms for Programming Contests - Week 1

Problems

Problem structure

A problem consists of several parts:

• name, abbreviation, difficulty,

• problem author,

• problem statement,

• input format specification,

• output format specification,

• constraints,

• sample input and output.



Algorithms for Programming Contests - Week 1

Problems

Submitting programs

Submitting program is done on the TUMjudge web interface entirely.

• No files to be sent via e-mail etc.

• Only source code files are uploaded, no .class files or similar.

Submit

• Choose files to be uploaded by Drag-and-Drop or in the menu
“Choose Files”,

• Choose problem,

• Choose language (unless already chosen automatically),

• “submit”,

• F5, F5, F5, F5, . . .



Algorithms for Programming Contests - Week 1

Problems

Submitting programs



Algorithms for Programming Contests - Week 1

Problems

Judging

The TUMjudge

• compiles,

• executes,

• tests

the submission against several test cases. As long as the TUMjudge is
working on a submission, the submission’s status is “PENDING”.
The submission is treated instantaneously and the TUMjudge (usually)
announces its verdict within a few moments.



Algorithms for Programming Contests - Week 1

Problems

Judging

The following verdicts can occur:

CORRECT

The submission successfully solved all the test cases.

COMPILER-ERROR

The submission could not be compiled. The exact error message can be
seen on the submission’s detail page.

NO-OUTPUT

The submission does not produce any output. Be sure to output to
“standard out”.



Algorithms for Programming Contests - Week 1

Problems

Judging

TIMELIMIT

The submission runs longer than the maximal allowed time and was
terminated.
Possible reasons:

• The submission runs in an endless loop.

• The submission is not efficient enough.

RUN-ERROR

An error occured during the submission’s execution.
Possible reasons:

• Division by 0.

• Incorretly addressing memory locations, e.g.
ArrayIndexOutOfBounds.

• Using more memory than the allowed memory limit.



Algorithms for Programming Contests - Week 1

Problems

Judging

WRONG-ANSWER

The submission’s output is incorrect.
Possible reasons:

• The answer is just wrong.

• The answer does not conform to the output format specification
given on the problem set.

• The answer is not exact enough (e.g. with floating point answers
with a desired precision).

TOO-LATE

The program was submitted after the submission deadline. It is stored in
the system, but no longer processed.



Algorithms for Programming Contests - Week 1

Public Scoreboard

Scoreboard

Different background colors in-
dicate different outcomes:

Problem solved.

Problem solved first.

Incorrect submission(s).

Submission in pending
status.

No submissions.



Algorithms for Programming Contests - Week 1

Public Scoreboard

Scoreboard

Order (tie-breakers):

1 number of solved problems,

2 score:
• per problem: (number of incorrect submissions) ∗ (penalty time) +

(time for the first correct submission),
• penalty time = 600, i.e., 10 hours,

• e.g. 3/1820 indicates: the problem was solved with 3 submissions,

with a total penalty time of 1820.

You can submit any number of times to solve a problem!

Each week’s score itself (apart from the number of problem solved) does
not change the grading at the end of the semester, it only affects the
position in the scoreboard of that week.



Algorithms for Programming Contests - Week 1

Public Scoreboard

Scoreboard

Anybody who does not want to be seen in the public scoreboard, must
choose the invisibility option during the registration (in “Category”).



Algorithms for Programming Contests - Week 1

Clarifications

Clarifications

• Messages to the system administrators, i.e., the teaching assistants
and/or tutors.

• Sent via the “request clarification” form on the overview page.

• Used for questions about the problems or about the system in
general.

• Please choose a subject accordingly: either “general” or the specific
problem.

• Depending on the actual question, the answer is only visible to the
persons who sent the question, or it is published to all users of the
system.

• The answer (along with the question) can be seen on the right side
on the overview page.



Algorithms for Programming Contests - Week 1

Clarifications

Clarifications



Algorithms for Programming Contests - Week 1

Restrictions

Restrictions

• Compilation of a submission may take no longer than 30 seconds.
After that time, compilation is aborted and the verdict will be a
COMPILER-ERROR.

• The maximal allowed size of a source code file is 256 KB. Bigger
submissions will not be accepted.

• During the execution of a submissions, up to 8 GB of memory is
available. This includes source code, variables, stack, Java VM (up
to 0,35 GB),... If a submission tries to address more memory, it will
be terminated and the verdict will be a RUN-ERROR.

• It is not allowed to use multi threading. Each submission has only
one processor fully at its disposal.



Algorithms for Programming Contests - Week 1

Restrictions

Restrictions

Tampering with the system in any way will be penalized!
Do not fool the system!

• Do not open files, input is always in “standard in”.

• Do not address files locally on the system! This is not possible
anyways.

• Do not open network connections.

• . . .

Furthermore, please keep the number of submissions at an acceptable
level as to not unnecessarily slow judging for all participants.



Algorithms for Programming Contests - Week 1

Sample source code

Java Submission

import java.util.Scanner;

public class JavaSubmission {

public static void main(String [] args) {

// create scanner object

Scanner s = new Scanner(System.in);

// loop over all test cases

int t = s.nextInt ();

for(int i = 1; i <= t; i++) {

// read several types of input

boolean b = s.nextBoolean ();

String st = s.next ();

// output: use the possibility you like more

System.out.println("Case #"+i+": "+st);

System.out.format("Case %d#: %s\n", i, st);

}

s.close ();

}

}



Algorithms for Programming Contests - Week 1

Sample source code

C++ Submission

#include <iostream >

#include <stdio.h>

int main() {

// loop over all test cases

int t;

scanf("%d", t);

for(int i = 1; i <= t; i++) {

// read several types of input

int j;

std:: string s1;

char s2 [101];

// use the possibility you like more

std::cin >> j >> s1;

scanf("%d %100s", &j, s2);

// output: use the possibility you like more

std::cout << "Case #" << i << ": " << s1 << std::endl;

printf("Case #%d: %s %d", i, s2, j);

}

return 0;

}



Algorithms for Programming Contests - Week 1

Hints for Solving Problems

Understanding Problems

• Read the problem statement very carefully.

• Also the constraints, think about special cases:
• E.g. if there are negative values or 0 allowed, then there is probably a

test case for that.
• E.g. special characters or a space when dealing with strings.
• ...



Algorithms for Programming Contests - Week 1

Hints for Solving Problems

Solving Problems

• Code efficiently.
• Think about which data types to use.
• Sometimes arrays might not have to be two- or three-dimensional.
• Implement algorithms given in the lecture with their amortized

running times.

• Look carefully at the input and output specifications and let your
program be conform to those!

• Remove all debug messages before submitting.

• Write comments!


	Content of the Course
	Judge
	Problems
	Public Scoreboard
	Clarifications
	Restrictions
	Sample source code
	Hints for Solving Problems

