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Course details

0.1 Focus of this course

The success of machine learning has been unprecedented in the past few years. It is
natural to wonder why popular machine learning algorithms exhibit good performance on
a wide range of problems. This course will take a foundational perspective on learning,
and will describe the mathematical principles that are useful for theoretically analysing
the performance of machine learning algorithms.

The first part of the course will focus on statistical learning theory that provides the foun-
dation for a systematic study of supervised learning. We will cover fundamental topics
such as the Vapnik-Chervonenkis (VC) theory and the Probably-Approximately-Correct
(PAC) framework. The theories provide two perspective for analysing the goodness of su-
pervised learning algorithms. We will introduce the notion of empirical risk minimisation
and different loss functions. We will also cover concepts of algorithmic stability, regularisa-
tion and boosting as well as analysis of nearest neighbour classification and support vector
machines, If time permits, online learning will be covered.

The second part of the course will briefly cover the theoretical foundations of unsupervised
learning, Unlike the supervised setting, there is a lack of unified theory in the case of
unsupervised learning. Most of the lecture will focus on clustering for which we will study
axiomatic, probabilistic, information theoretic and approximation based approaches to
quantify the goodness of clustering algorithms as well the solvability of clustering problems.
We will extend the discussion to hierarchical clustering and graph clustering, and cover
some theory for random graphs. If time permits, dimension reduction will be covered.

0.1.1 Lecture notes and reference

These lecture notes should be used as guidelines to the contents covered in the lectures.
For the first part, there are excellent textbooks. The textbook of Shalev-Shwartz and Ben-
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COURSE DETAILS iv

David [2018] is highly recommended and is freely available online.1 Most of the contents
in the lecture notes are aligned with this textbook. Additionally, some ideas have taken
from courses on learning theory offered by Shivani Agarwal, Ruth Urner, Ilya Tolstikhin
and Ambuj Tewari at different institutes.2

The second part has very few coherent material. We will refer to some parts of Shalev-
Shwartz and Ben-David [2018] and Blum et al. [2020].3 However, most of the remaining
content will be on research papers that will be mentioned in corresponding chapters.

0.2 Course logistics

Course number/name: IN2378 (Statistical Foundations of Learning)
SWS: 3V + 1Ü
Credits: 5

0.2.1 Registration

Register for the course on TUM Online. We will use Moodle for announcements, discussions
and assignments.

0.2.2 Meetings

Lectures will be held at TUM Informatik MI Hörsaal 2 (Room: 00.04.011) on:

• Tuesday 16:00-18:00

• Friday 14:00-16:00

The teaching will be in the form of lectures and discussions, and techniques of inverted
classroom will be used. Lectures will be taught on board, and sometimes, the lecture notes
will be presented.

The bi-weekly schedule will be as follows. The first and every alternate week after that
will have two 90-min lectures (on both days of the week). Starting from the second week,
tentatively every alternate week will have a 90-minute lecture (on Tuesday) and a 90-minute
tutorial session (on Fridays 25.10, 08.11, 22.11, 06.12, 20.12, 10.01, 24.01, 07.02).

1 Online copy: https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/

understanding-machine-learning-theory-algorithms.pdf
2 The lecture notes of these courses are also available online. However, the approaches in the courses

may differ, and could be confusing to read all of them in parallel.
3 Online link for Blum’s book: https://www.cs.cornell.edu/jeh/book.pdf

https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.cornell.edu/jeh/book.pdf


COURSE DETAILS v

Every 90-min lecture will consist of two parts:

• In the second part, new concepts are introduced, key theorems are stated and their
significance is discussed. Main proof techniques will be pointed out so that the
students can study/derive the mathematical details at home.

• The first part could last between 0 to 60 min, where the mathematical details from
the previous lecture will be discussed.

Every bi-weekly 90-min tutorial will discuss solutions to the bi-weekly homework, and also
answer further difficulties in the material from the preceding week.

0.3 Exam and assignment

There will be a 90-minute written examination at the end of the semester, possibly on:

• February 17, 2020 (Monday) 8:00 – 9:30

Venue for the exam and schedule for the repeat exam will be announced later.

In addition, there will be bi-weekly assessments in the form of homework. The final grades
will be based on the final written examination. However, exceptional homework scores
(about top 10%) will lead to 0,3 additional note in the final exam.

The bi-weekly assignment can be submitted individually or in teams of two. Sub-
missions must be made through Moodle in form of a single PDF file. In case of team
submissions, only one submission should be made containing the names of both members.
You must use the same team for all the subsequent assignments. If a team
member drops out, the other member cannot form another group.

Late submission: Each team is eligible for a total of maximum 5 late days throughout
the semester, and maximum 2 late days per assignment. If these limits are exceeded, late
submissions will be ignored.

0.4 Further discussions

There will not be further office hours to discuss problems related to the course. If there
is problem related to understanding the scientific content, everyone is advised to raise the
question on the discussion forum on the course’s Moodle page. Everyone is also encourage
to answer / attempt to answer questions raised by others. If there is any other problem,
talk to the lecturer during or at the end of the regular meetings.
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Statistical Learning Theory
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Chapter 1

Vapnik Chervonenkis (VC)
Theory

In this chapter, we introduce a formal framework for supervised learning that encompasses
classification, regression and related machine learning problems. We then study the notion
of generalisation, that is, understanding how well can we generalise the prediction task from
training samples to unforeseen test data. Our discussions in this chapter mainly focus on
a part of learning theory known as the theory of generalisation or Vapnik-Chervonenkis
(VC) theory, introduced by Vladimir Vapnik and Alexey Chervonenkis [Vapnik and Cher-
vonenkis, 1971, Vapnik, 2013]. The material in this chapter aligns with Chapters 2, 4, 6
and partially 9 of Shalev-Shwartz and Ben-David [2018].

1.1 Framework of supervised learning

We first introduce our formal model of supervised learning. There is a set X that includes
all instances that we would like to classify or more generally, predict. We often call X
as the domain or feature space. For instance, X could be the set containing details of
all participants in this course. There is also a set Y, called the label set, that contains all
possible outcomes of our prediction task. For instance, we could try to predict whether you
like or hate football. This would be an example of binary classification with Y = {0, 1} or
{−1,+1}. We could also try to predict the total duration of football that you have played
in your lifetime, which would correspond to a regression task with Y = [0,∞) or R. In
many cases, the data is represented by p-dimensional real vectors, that is, X ⊆ Rp. For
most of this course, we will focus on the case of X = Rp and Y = {0, 1}.

The goal of machine learning is to produce a predictor h : X → Y. In supervised learning,

2



CHAPTER 1. VC THEORY 3

we find such a predictor based on a training sample

S = {(x1, y1), (x2, y2), . . . , (xm, ym)},

where (xi, yi) ∈ X × Y is an ordered pair of training data and corresponding label. We
will denote the training sample size as m. A learner or learning algorithm A takes the
training sample S as input, and outputs a predictor h. Formally, we write the learner as a
function

A :
∞⋃
i=1

(X × Y)i → YX ,

where YX is the set of all functions from X to Y.1

1.1.1 Loss and risk

The key property of a good predictor is that it should have low error on test data, that is,
instances whose labels were not observed at the time training / learning. We quantify the
goodness of the predictor in terms of its risk, also called the generalisation error or the
expected loss. To formalise the notion of risk, we define a loss function

` : Y × Y → [0,∞),

that is, for any x ∈ X with true label/value y ∈ Y and for predictor h, we compare h(x) and
y and report a non-negative loss `(h(x), y) that accounts for any deviation of the predicted
value h(x) from the true value y.2

For binary classification, the typical loss function is the 0-1 loss, `(h(x), y) = 1 {h(x) 6= y},
where 1 {·} is the indicator function. The same can also be extended to multi-class clas-
sification, but more general loss functions are also used in this setting. In regression, the
most common loss function is the squared loss `(h(x), y) = (h(x)− y)2.

We also require a probabilistic view of learning to define risk. For this, we assume that D
is a probability distribution on X × Y.
Definition 1.1 (Risk / generalisation error). The risk of a predictor h is defined as

LD(h) = E(x,y)∼D[`(h(x), y)], (1.1)

which is the expected loss that the predictor h would incur when it has to predict for a test
instance sampled according to D.

1 For most of the course, we will not refer to any randomised algorithm. Hence, given the training
sample S, the output A(S) is fixed.

2 In some texts, a loss function is defined as a function on ` : YX × X × Y → [0,∞), that is, it takes
three inputs (h, x, y). This characterisation is same as ours, with h and x being written as two separate
inputs instead of writing ` as a function h(x).
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In particular, for the 0-1 loss, one can verify that the risk is the probability of predicting
an incorrect label.3

For this course, we will assume that the training samples (x1, y1), . . . , (xm, ym) are inde-
pendent and identical distributed (iid) according to D. We will denote this as S ∼ Dm.
Both the iid assumption and the fact that the training and test data are sampled from the
same distribution are natural in most scenarios.4

Example 1 (Bayes classifier). Observe that D is a joint distribution on X × Y, and
we can decompose it into DX , the marginal distribution of D over X , and PY|X (y|x), the
conditional probability of observing the label y when the data instance is x. We restrict
to binary classification, Y = {0, 1}, and define η(x) = PY|X (y = 1|x). Note that the risk
can be written as

LD(h) = EDX
[
EY|X [1 {h(x) 6= y} |x]

]
= EDX

[
PY|X (h(x) 6= y |x)

]
.

Exercise 1.1. Write PY|X (h(x) 6= y |x) in terms of η(x). Verify that that the risk is
minimised by the classifier

h(x) =

{
1 if η(x) ≥ 0.5
0 if η(x) < 0.5

Hint: Note that h(x) is a deterministic function given x, and hence, P(h(x) = 0, y = 1 |x) =
P(y = 1|x)1 {h(x) = 0}.

This is known as the Bayes classifier. More generally, the Bayes decision rule is given by

h(x) = arg max
y∈Y

PY|X (y|x).

The Bayes decision rule results in the minimum possible risk for a given distribution D,
known as the Bayes risk,

L∗D = min
h∈YX

LD(h). (1.2)

1.1.2 Empirical risk minimisation (ERM)

In context of the previous discussion, a ‘good’ predictor can be obtained if we find h which
has a small risk (hopefully, the least among all possible h). Unfortunately, we cannot
compute LD(h) since we do not have access to D, except for the training data S ∼ Dm.

3 The general convention is to use capital letters to denote random variables (X,Y ) ∼ D, while an
instance is denoted by small letters (x, y). This is not strictly followed in machine learning, and we will
mostly use small letters to denote both random variables and instances.

4 Many practical problems violate one of the above two assumptions. There exist theoretical results
when these assumptions, which we will not study in this course.
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Hence, we cannot directly minimise the risk LD(h) over all h. To overcome this limitation,
we instead minimise the empirical risk defined as

LS(h) =
1

m

m∑
i=1

`(h(xi), yi). (1.3)

Exercise 1.2. Verify that the empirical risk of h is an unbiased estimated of its true risk,
that is, ES [LS(h)] = LD(h). Does it hold if S is not iid? Under what conditions on S or
h, will the equality fail?

Note that minimisation of LS(h) over all h ∈ YX could be computationally intractable
since the set of all functions YX is infinite in most practical cases. In this chapter, we
ignore this computational aspect and focus only on the statistical part, that is, we assume
that we have finite training sample S but an infinite computation power.

1.1.3 Hypothesis class

One of the main questions that we will study is the following:

Assume that our learner A (for example, ERM) provides a predictor ĥ = A(S).
What can we say about LD(ĥ)?

Typically, we are interested in showing that a learning algorithm is ‘good’ (that is, LD(ĥ)
is small) and hence, we focus on deriving an upper bound on LD(ĥ).5 The above question
can be asked in several ways. For instance, since we know that the ERM predictor has a
small empirical risk, one could ask the following question:

Let ĥ = A(S). How large can LD(ĥ)− LS(ĥ) be?6

This question is the topic of the present chapter. We now show that the ERM, as described
earlier, can result in a high difference between true and empirical risk.
Example 2 (A naive approach to ERM). Consider a binary classification problem.
Let S be the training sample. Consider the following classifier

hS(x) =

{
1 if (x, 1) ∈ S,
0 otherwise (if (x, 0) ∈ S and for every x we have not observed in S).

It follows that LS(hS) = 0 for every S. However, if D is such that η(x) = PY|X (y = 1 |x)
has infinite support, then LD(hS) > 0 with probability 1 for every S (since hS labels at
most m instances as 1, and is incorrect on many infinitely many instances).

5 We will later see a negative result, called no free-lunch theorem, which states no learner can be good
for all possible data. To prove this theorem, we will derive a lower bound for LD(ĥ).

6 In some texts, the difference between true and empirical risk is called generalisation error. However,
we will use the term generalisation error for LD(ĥ) and not the difference.



CHAPTER 1. VC THEORY 6

In particular, consider the simplified setting where X = R and η(x) = 1 for all x. In this
case hS(x) = 1 for all x observed in the training sample, and incorrectly labels all other x
as 0. Hence, LD(hS) = 1 while LS(hS) = 0.
Exercise 1.3. Does the above example violate the relation ES [LS(h)] = LD(h)? Why?

The above example shows that ERM does not generalise well if the predictors are allowed
to be arbitrarily complex (that is, if we optimise over YX ). One can avoid this issue by
restricting the minimisation over some set H ⊆ YX , called a hypothesis class. Henceforth,
we will only consider the following ERM learner:

ERM: ĥ = arg min
h∈H

LS(h) (1.4)

which is restricted to the hypothesis class H. The above learner is called ERM with induc-
tive bias since the resulting predictor is biased towards certain types of functions.

Here are some simple, yet common, hypothesis / function classes.
Example 3 (Decision stumps). Let X = R and Y = {0, 1}. A decision stump is a
one-level decision tree of the following form. For some t ∈ X and b ∈ {0, 1},

ht,b(x) =

{
b if x ≤ t,
1− b if x > t.

The set H =
{
ht,b : t ∈ R, b ∈ {0, 1}

}
⊂ {0, 1}R is the hypothesis class of decision stumps.

We will later see that ERM for this class is efficiently solvable.
Example 4 (Linear classifiers). For binary classification in Rp, one of the popular
classes in the set of linear classifiers

H =
{
hw,b = sign(〈w, x〉+ b) : w ∈ Rp, b ∈ R

}
.

Here, 〈w, x〉 = wTx. We define the label set as Y = {−1,+1} for convenience.

In the next sections, we will see that for ‘nice’ hypothesis classes, one can derive upper
bounds on the deviation LD(ĥ) − LS(ĥ). Before going into this discussion, we conclude
this section with some remarks on the effect of H on the generalisation error LD(h).

1.1.4 Underfitting and overfitting

Recall that the Bayes risk is the least possible risk that can be achieved by any predictor,
and in fact, obtained by the Bayes decision rule. Hence, it is natural to compare the
performance of a learned predictor with the Bayes risk L∗D = minh∈YX LD(h). In particular,
one may ask:

Let ĥ = A(S). How large can LD(ĥ)− L∗D be?
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Consider the ERM learner (1.4). Then it is obvious that ĥ can only be as good as the best
possible predictor in the class H, that is, LD(ĥ) ≥ min

h∈H
LD(h). We may write

LD(ĥ)− L∗D = LD(ĥ)−min
h∈H

LD(h)︸ ︷︷ ︸
estimation error

+ min
h∈H

LD(h)− L∗D︸ ︷︷ ︸
approximation error

.

The estimation error quantifies how bad is the output of the learner with respect to the
best possible predictor in the class, whereas approximation error quantifies the error in-
duced because we restricted the search to the class H. In Example 2, we eliminated the
approximation error by minimising over YX , but in this case, the ERM predictor could
still have a high estimation error. On the other hand, we may consider a trivial H = {h}
containing a single predictor, which will lead to zero estimation error, but possible a high
approximation error (unless h is the Bayes rule).

Thus the size of H often controls both the approximation and estimation errors. A small
H, a simpler hypothesis class, is easier to estimate but may provide poor approximation
of the optimal decision. This leads to the notion of underfitting — given training samples,
the predicted model cannot achieve a low training error, and hence, may lead to poor test
error as well. A larger H provides better approximation, but can be difficult to estimate
correctly. In other words, we may fit the training data too well, but the predictor is not
able to generalise well to unseen test data. This trade-off is also known as the bias-variance
tradeoff, which we will discuss at a later stage.

Complexity of hypothesis class

Training error

Test error

Figure 1.1: Typical behaviour of training error (empirical risk) and test error (generalisa-
tion error) for varying model complexity
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1.2 Uniform convergence

We now study a way to derive bounds on the difference LD(ĥ) − LS(ĥ). We restrict the
discussion to classification, or more precisely, the 0-1 loss function. However, the technique
can be easily used in a more general setting of bounded loss functions, that is, when
` : Y ×Y → [0, B] for some B <∞. We need the following concentration inequality.
Theorem 1.2 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random vari-
ables such that Xi ∈ [ai, bi] almost surely. For any ε > 0, the following statements hold:

P

(
n∑
i=1

Xi −
n∑
i=1

E[Xi] > ε

)
≤ exp

(
− 2ε2∑

i(bi − ai)2

)
,

P

(
n∑
i=1

Xi −
n∑
i=1

E[Xi] < −ε

)
≤ exp

(
− 2ε2∑

i(bi − ai)2

)
,

and P

(∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E[Xi]

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− 2ε2∑

i(bi − ai)2

)
,

Proof. See Wikipedia pages for Hoeffding’s inequality and Hoeffding’s lemma.

Exercise 1.4. Let h ∈ {−1, 1}X be a fixed hypothesis and S ∼ Dm be a training sample.
Show that

PS
(∣∣LD(h)− LS(h)

∣∣ > ε
)
≤ 2 exp

(
−2mε2

)
.

Let ĥ = A(S) for some learner A. The above statement does not hold for ĥ (except in
some trivial cases). Why?

The above exercise states that we can bound the generalisation error for a fixed h using
Hoeffding’s inequality, but it does not immediately provide a bound on LD(ĥ). To obtain
such a bound, we note that if ĥ ∈ H, then∣∣LD(ĥ)− LS(ĥ)

∣∣ ≤ sup
h∈H

∣∣LD(h)− LS(h)
∣∣,

which leads to the conclusion

PS
(∣∣LD(ĥ)− LS(ĥ)

∣∣ > ε
)
≤ PS

(
sup
h∈H

∣∣LD(h)− LS(h)
∣∣ > ε

)
. (1.5)

Instead of bounding only the difference for ĥ, we derive a bound that holds uniformly for
all h ∈ H.
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1.2.1 Generalisation error bound for finite hypothesis class

We first conisder the simple case where H contains finitely many hypotheses, that is,
H = {h1, h2, . . . , h|H|} with |H| being the cardinality of class H. We can bound the
probability in (1.5) using the following result, which follows from the union bound for
probabilities.
Exercise 1.5. Recall the union bound (see Boole’s inequality on Wikipedia). Use this to
prove the following. Let X1, . . . , Xn be random variables (could also be dependent). Then

P
(

max
1≤i≤n

Xi > ε

)
≤

n∑
i=1

P(Xi > ε)

We now bound (1.5) as

PS
(∣∣LD(ĥ)− LS(ĥ)

∣∣ > ε
)
≤ PS

(
sup
h∈H

∣∣LD(h)− LS(h)
∣∣ > ε

)
≤ 2|H| exp

(
−2mε2

)
, (1.6)

where the last step uses both the above union bound, and the inequality for each h.

One can state the bound in (1.6) in the following way, which provides an explicit bound
on the generalisation error. Given δ ∈ (0, 1). For ĥ ∈ H, with probability 1− δ,

LS(ĥ)−

√
ln(|H|) + ln

(
2
δ

)
2m

< LD(ĥ) < LS(ĥ) +

√
ln(|H|) + ln

(
2
δ

)
2m

(1.7)

Here, ln denotes the natural logarithm. Typically, we are interested in the upper bound
on LD(ĥ). Also, we focus less on the constants or the term ln(2δ ), and are interested in the
dependence on size of H (here, logarithmic) and the training sample size m.

1.2.2 Uniform convergence for infinite hypothesis class

Most hypothesis classes have infinite cardinality (for instance, linear classifiers, decision
stumps). Obviously, the error bound (1.7) has no meaning in such cases. We will see
that the bound can be improved so that H is replaced by the notion of growth function
defined below. Note that the following discussion is restricted to binary classification,
Y = {−1,+1}.

Consider a sequence C = (x1, . . . , xm) ∈ Xm. We define the restriction of a hypothesis
class H ⊆ {−1,+1}X to C as

H|C =
{

(h(x1), . . . , h(xm)) : h ∈ H
}
,
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which is the set of all possible labelling of the m data points in C.
Definition 1.3 (Growth function). For binary function classes H ⊆ {−1,+1}X , the
growth function τH(m) : N→ N is given by

τH(m) = max
C⊆X :|C|=m

∣∣H|C∣∣ .
It is the maximum number of possible binary labelling for any m instances in X .
Exercise 1.6. Verify that τH(m) ≤ min {|H|, 2m}.

We now state the main result of this section, which is an equivalent for (1.6)–(1.7) for
infinite hypothesis classes.
Theorem 1.4 (Uniform convergence for infinite H). If m ≥ 2 ln 4

ε2
and H ⊆ {−1,+1}X

has a growth function τH(·), then we have

PS
(

sup
h∈H

∣∣LD(h)− LS(h)
∣∣ > ε

)
≤ 4τH(2m) exp

(
−mε2/8

)
,

Hence, for any δ ∈ (0, 1), the generalisation error of the a learned predictor ĥ = A(S) ∈ H
satisfies

LD(ĥ) < LS(ĥ) +

√
8
(
ln
(
τH(2m)

)
+ ln

(
4
δ

))
m

with probability 1− δ.

Note that the above bound holds for any learner, and not necessarily ERM.
Exercise 1.7. The second statement in the theorem does not impose any assumption on
m. Verify that the condition mε2 > 2 ln 4 holds for the second statement.

Before proving the above theorem, we make some remarks about the proof, highlighting
the reasons that allow us to replace |H| by the growth function (ignoring different constant
factors, this is the only difference between the bounds in (1.6) and Theorem 1.4). The
following discussion are informal (even partly incorrect), and may make more sense after
going through the proof of the theorem. The proof of (1.6) has two parts:

• union bound gives PS(suph |LD(h)−LS(h)| > ε) ≤ |H| suph PS(|LD(h)−LS(h)| > ε)

• Hoeffding’s inequality provides bound on PS(|LD(h)− LS(h)| > ε)

Hoeffding’s inequality will be used at the last stage of the proof of Theorem 1.4. However,
it is obvious that union bound, as stated above, cannot be used for infinite H. To work
around this, the proof requires the following steps:

• Symmetrisation by introducing independent copy of S:
Observe that for any h and any training set S (of size m), LS(h) can take only finitely
many values (verify this). One may partition H into groups, where the empirical risk
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is same for all h in a group. Hence, for every S, when we through the lens of LS ,
there are much less than |H| different hypotheses. However, this is not the case for
|LD(h)− LS(h)| since LD(·), being an expectation, may take infinitely many values.
Hence, it is easier if we get rid of LD(·).

This is achieved through symmetrisation. Let S′ be another training sample of size
m, independent of S. Small |LD(h) − LS(h)| would mean that |LS(h) − LS′(h)| is
also small. Formally, we use symmetrisation to modify the problem into bounding

the probability PS,S′
(

sup
h
|LS(h)− LS′(h)| > ε′

)
for some ε′. To control this, we can

now exploit the fact that |LS(·)−LS′(·)| takes only finitely many values, and hence,
our previous informal argument based on partitioning H would be possible.

• Rademacher symmetrisation (swapping permutations):
There still remains a major hurdle in the application of union bound — it can be
applied only when the events under consideration are fixed. For instance, given a
h, the event

{
|LD(h) − LS(h)| > ε

}
is fixed and only its occurrence is random. On

the other hand, when we partition H based on the values of |LS(·) − LS′(·)|, then
the partition itself is random (depends on (S, S′)). To work around this, we use
the technique of Rademacher symmetrisation, which introduces Rademacher random
variables, that is, random variables taking values {−1,+1} each with probability 1

2 .

We postpone the mathematical details to the next section, but provide an intuitive
explanation (that may seem quite different from the mathematical statements). Ob-
serve that S∪S′ can be viewed at a set of 2m i.i.d. training instances. If we randomly
swap the i-th instances of S and S′ for every i, and again compute the absolute dif-
ference in the two empirical means, then its distribution should not differ. This is
because, irrespective of the swapping permutations, the quantity |LS(·)− LS′(·)| re-
mains as a function of i.i.d. samples. Now, we may fix (condition on) S, S′ and only
consider the random swapping, in which case we need not consider supremum of all
H, but only over H|S∪S′ , a finite quantity.

• Union bound and Hoeffding’s inequality:
The above step loosely ensures that we need to care about only |H|S∪S′ | ≤ τH(2m)
types of functions. We can now apply union bound resulting in a multiplicative factor
of at most τH(2m), and finish the proof with the help of Hoeffding’s inequality.

1.2.3 Proof of uniform convergence

We now convert the above discussion into a proof. We begin with following lemma.
Lemma 1.5 (Symmetrisation by introducing independent copy of S). Let S, S′ ∼
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Dm be two independent training sets, each of size m. For mε2 > 2 ln 4,

PS
(

sup
h∈H
|LS(h)− LD(h)| > ε

)
≤ 2PS,S′

(
sup
h∈H
|LS(h)− LS′(h)| > ε

2

)
.

Proof. For each S, define hbadS as a function for which
∣∣LS(hbadS )− LD(hbadS )

∣∣ > ε, if such a
function exists.7

Exercise 1.8. Verify that the following two events are equal{∣∣∣LS(hbadS )− LD(hbadS )
∣∣∣ > ε

}
=

{
sup
h∈H
|LS(h)− LD(h)| > ε

}
. (1.8)

We use the fact A ⊂ B =⇒ P(A) ≤ P(B) to write

PS,S′
(

sup
h∈H
|LS(h)− LS′(h)| > ε

2

)
≥ PS,S′

(∣∣∣LS(hbadS )− LS′(hbadS )
∣∣∣ > ε

2

)
≥ PS,S′

({∣∣∣LS(hbadS )− LD(hbadS )
∣∣∣ > ε

}⋂{∣∣∣LD(hbadS )− LS′(hbadS )
∣∣∣ ≤ ε

2

})
= ES,S′

[
1
{∣∣∣LS(hbadS )− LD(hbadS )

∣∣∣ > ε
}

1
{∣∣∣LD(hbadS )− LS′(hbadS )

∣∣∣ ≤ ε

2

}]
= ES

[
1
{∣∣∣LS(hbadS )− LD(hbadS )

∣∣∣ > ε
}
PS′|S

(∣∣∣LD(hbadS )− LS′(hbadS )
∣∣∣ ≤ ε

2

)]
Note that, conditioned on S, the function hbadS is a deterministic function. So we can apply
Hoeffding’s inequality (Exercise 1.4) to write

PS′|S
(∣∣∣LD(hbadS )− LS′(hbadS )

∣∣∣ > ε

2

)
≤ 2 exp

(
−mε

2

2

)
≤ 1

2

for mε2 ≥ 2 ln 4. Plugging this into the previous derivation, we have

PS,S′
(

sup
h∈H
|LS(h)− LS′(h)| > ε

2

)
≥ 1

2
ES
[
1
{∣∣∣LS(hbadS )− LD(hbadS )

∣∣∣ > ε
}]

=
1

2
PS
(∣∣∣LS(hbadS )− LD(hbadS )

∣∣∣ > ε
)

=
1

2
PS
(

sup
h∈H
|LS(h)− LD(h)| > ε

)
,

where the last step is due to (1.8). This proves the lemma.

7 We need the hbadS because there may not be any h ∈ H for which |LS(h) − LD(h)| achieves the
supremum value (typical problem with supremum).
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Bounding via Rademacher symmetrisation. We define σ = (σ1, . . . , σm), where
σ1, . . . , σm are independent Rademacher variables, that is P(σi = +1) = P(σi = −1) = 1

2 .
Let (x′i, y

′
i) be the i-th instance in S′, and define

Yσ ≡ Yσ(S, S′, h) :=
1

m

m∑
i=1

σi
(
1 {h(xi) 6= yi} − 1

{
h(x′i) 6= y′i

} )
.

Observe that Y(1,...,1) = LS(h)− LS′(h).
Exercise 1.9. Verify that Yσ has the same distribution for every σ. (Hint: Earlier discus-
sion on Rademacher symmetrisation in terms of swapping permutations may be useful.)

The above fact implies that suph |Yσ| has same distribution for every σ. So we write

PS,S′
(

sup
h∈H
|LS(h)− LS′(h)| > ε

2

)
= PS,S′

(
sup
h∈H
|Y(1,...,1)| >

ε

2

)
=

1

2m

∑
σ∈{−1,+1}m

ES,S′
[
1

{
sup
h∈H
|Yσ| >

ε

2

}]

= ES,S′
[
Pσ|S,S′

(
sup
h∈H
|Yσ| >

ε

2

)]

We now bound the conditional probability. Since we have conditioned on S, S′, we may
focus only on H|S∪S′ (instead of H) since the possible values Yσ can take for any σ depends
only elements of H|S∪S′ . So

Pσ|S,S′
(

sup
h∈H
|Yσ| >

ε

2

)
= Pσ|S,S′

(
sup

h∈H|S∪S′
|Yσ| >

ε

2

)
≤

∑
h∈H|S∪S′

Pσ|S,S′
(
|Yσ| >

ε

2

)
≤ |H|S∪S′ | sup

h∈H
Pσ|S,S′

(
|Yσ| >

ε

2

)
(1.9)

where the first inequality is due to union bound. Recall the definition of Yσ and note that,
conditioned on S, S′, it is the average of m independent zero-mean random variables each
taking values in {−1, 0,+1}. We apply Hoeffding’s inequality to bound the conditional

probability by 2 exp
(
−mε2

8

)
. Finally recall that |H|S∪S′ | ≤ τH(2m) from the definition of

growth function. Substituting these bounds in (1.9) and combining with Lemma 1.5 leads
to the claim of Theorem 1.4.
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1.3 VC dimension

Recall that the growth function satisfies τH(2m) ≤ 22m. Plugging this in Theorem 1.4
immediately leads to the bound

LD(ĥ) ≤ LS(ĥ) +

√
16 ln 2 +

8 ln
(
4
δ

)
m

with probability 1 − δ. This is quite weak since trivially LD(ĥ) ≤ 1. Thus, the uniform
convergence bound of Theorem 1.4 has little significance unless we are able to show that τH
grows slowly for some infinite function classes. This is the topic of the present section.
Definition 1.6 (Shattering). Let H ⊆ {−1,+1}X and C = (x1, . . . , xm) ∈ Xm. We say
that C is shattered by H if |H|C | = 2m.
In other words, for every possible labelling s ∈ {−1,+1}m of instances in C, there is a
hs ∈ H such that that hs(xi) = si for i = 1, . . . ,m.
Definition 1.7 (VC dimension). The Vapnik Chervonenkis (VC) dimension of a non-
empty H ⊆ {−1,+1}X is the cardinality of the largest possible subset of X that can be
shattered by H, that is,

VCdim(H) = max{m ∈ N : τH(m) = 2m}.

If H can shatter arbitrarily large sets, then VCdim(H) =∞.
Exercise 1.10. For non-empty H, show that VCdim(H) = 0 if and only if |H| = 1.
Hint: Verify that if |H| ≥ 2, then there is a point that H can shatter.

We will see the VC dimension of few function classes later, but we first demonstrate the
role of VC dimension in the context of uniform convergence.

1.3.1 Sauer’s lemma

For H with finite VC dimension, the Sauer’s lemma provides a bound on the growth
function in terms of VCdim(H).
Theorem 1.8 (Sauer’s lemma). Let H ⊆ {−1,+1}X be non-empty with VCdim(H) =
d <∞. For all m ∈ N,

τH(m) ≤
d∑
i=0

(
m

i

)
.

A simpler bound on growth function is often used, which holds for all m ≥ d ≥ 1,

τH(m) ≤
(em
d

)d
.
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Proof. The proof is by induction on m and d.

Base case: Note that there are two base cases: d = 0,m ≥ 1 and m = 1, d ≥ 1. For
d = 0,m ≥ 1: From Exercise 1.10, d = 0 =⇒ |H| = 1 and τH(m) = 1 =

(
m
0

)
. For

d ≥ 1,m = 1: Again d ≥ 1 =⇒ |H| ≥ 2. Hence, there is x ∈ X such that |H|{x}| = 2. So
τH(m) = 2 =

(
m
0

)
+
(
m
1

)
for m = 1.

Induction step: Let m > 1 and d > 0. We assume that the hypothesis τH(m′) ≤
d′∑
i=0

(
m′

i

)
holds for all m′ < m or d′ < d. Particularly, we assume it holds for (m − 1, d − 1) and
(m− 1, d).

Let C = (x1, x2, . . . , xm) ∈ Xm and define C ′ = (x2, . . . , xm). For every (y2, . . . , ym) ∈ H|C′
there can be only two possibilities:

• both (−1, y2, . . . , ym) and (+1, y2, . . . , ym) are in H|C
• either (−1, y2, . . . , ym) ∈ H|C or (+1, y2, . . . , ym) ∈ H|C

Let Y =
{

(y2, . . . , ym) ∈ H|C′ : (−1, y2, . . . , ym), (+1, y2, . . . , ym) ∈ H|C
}

. Verify that

|H|C | = |H|C′ |+ |Y |.

Since VCdim(H) = d, by our induction hypothesis |H|C′ | ≤ τH(m − 1) ≤
d∑
i=0

(
m−1
i

)
. On

the other hand, we may view Y as a function class Y ⊆ {−1,+1}C′ and claim that

VCdim(Y ) ≤ d− 1.

The claim trivially holds if m ≤ d. For m > d, this can be proved by contradiction. If
VCdim(Y ) = d, then there exists C ′′ ⊂ C ′ of cardinality d such that C ′′ is shattered by Y .
By construction, this would imply that C ′′ ∪ {x1} is shattered by H|C , or more generally
H. Hence, VCdim(H) ≥ d+ 1, which is a contradiction.

By inductive hypothesis, VCdim(Y ) ≤ d− 1 =⇒ |Y | ≤
d−1∑
i=0

(
m−1
i

)
. Hence,

|H|C | ≤
d∑
i=0

(
m− 1

i

)
+

d−1∑
i=0

(
m− 1

i

)

=

(
m

0

)
+

d∑
i=1

((
m− 1

i

)
+

(
m− 1

i− 1

))

=
d∑
i=0

(
m

i

)
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since
(
m
i

)
=
(
m−1
i

)
+
(
m−1
i−1
)

(verify). Since the above is true for every C ∈ Xm, the bound
also holds for τH(m).

The simpler bound is derived in the following way

τH(m) ≤
d∑
i=0

(
m

i

)
≤

d∑
i=0

(
m

i

)(m
d

)d−i
we assume m ≥ d

=
(m
d

)d d∑
i=0

(
m

i

)(
d

m

)i
1d−i

≤
(m
d

)d(
1 +

d

m

)m
≤
(em
d

)d
since

(
1 +

x

n

)n
≤ ex

Shalev-Shwartz and Ben-David [2018, Section 6.5.1] provides a different proof, where in-
duction happens only on m. Sauer’s lemma leads to an useful uniform convergence bound
when combined with Theorem 1.4.
Corollary 1.9 (Uniform convergence for finite VC dimension). Let H ⊆ {−1,+1}X
has VCdim(H) = d < ∞, then for any δ ∈ (0, 1), the generalisation error of any h ∈ H
satisfies

LD(h) < LS(h) +

√
8
(
d ln

(
em
d

)
+ ln

(
4
δ

))
m

with probability 1− δ.

1.3.2 VC dimension of some function classes

We now compute the VC dimension of some classes. The first few examples (exercises) can
be found in Shalev-Shwartz and Ben-David [2018].
Exercise 1.11 (Finite class). Let H be a finite class. Show that VCdim(H) ≤ log2(|H|).
Hint: This follows from the definition of VC dimension.

For infinite H, the general trick for computing VC dimension is based on the observation
that VCdim(H) = d ≤ ∞ if:

• there exists some set C ∈ X d that can be shattered by H

• no set of cardinality d+ 1 can be shattered by H
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Exercise 1.12 (Threshold functions). Let H ⊆ {−1, 1}R be the class of all threshold
functions of the following form. For some t ∈ X ,

ht(x) =

{
−1 if x ≤ t,
+1 if x > t.

Show that VCdim(H) = 1.
Exercise 1.13 (Decision stumps). Recall the class H ⊆ {−1, 1}R of one-dimensional
decision stumps, which are of the following form. For some t ∈ X and b ∈ {−1,+1},

ht,b(x) =

{
b if x ≤ t,
−b if x > t.

Show that VCdim(H) = 2.
Exercise 1.14 (Intervals). Let H ⊆ {−1, 1}R be the class of intervals of the following
form. For some a, b ∈ X with a < b,

ha,b(x) =

{
+1 if a ≤ x ≤ b,
−1 otherwise.

Show that VCdim(H) = 2.

Axis-parallel rectangles in R2.

These are 2-dimensional generalisation of intervals of the following form. For a < b and
c < d,

ha,b,c,d

(
x(1), x(2)

)
=

{
+1 if a ≤ x(1) ≤ b and a ≤ x(1) ≤ b,
−1 otherwise.

The VC dimension of the class of axis-aligned rectangles is 4. To see this, verify that the
following four points {(1, 0), (0, 1), (−1, 0), (0,−1)} are shattered. For any set C of 5 points,

3

1 2

4

3

1 2

4

5

Figure 1.2: (Left) Four points that can be shattered by axis-parallel rectangles; (Right)
Typical example of 5 points, where the central point cannot be labelled 0 by axis-parallel
rectangles when all outer points are 1.
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let x1 ∈ C be a left-most point (no point has lower value in first axis), x2 ∈ C\{x1} be a
right-most point (none of other 3 points have higher value in first axis), x3 ∈ C\{x1, x2}
be top-most point and x4 ∈ C\{x1, x2, x3} be bottom-most point. No function in H can
achieve the labelling (1, 1, 1, 1, 0).
Exercise 1.15 (Axis-parallel bounding boxes in Rp). Extend the definition of axis-
parallel rectangles to define the class of axis-parallel bounding boxes in Rp. Use the above
discussion to show that the VC dimension of this class is 2p.

Convex polygons in R2. Now consider the class H ⊆ {−1,+1}R2
of binary functions

defined by convex polygons with no restriction on the number of edges, that is, for every
convex polygon c in R2, there is hc ∈ H soh that hc(x) = 1 if x ∈ c, and −1 otherwise.

We claim that VCdim(H) = ∞. To see this, consider any m points on a circle. For a
labelling of the points, consider the convex hull c of the points labelled as +1. Observe
that hc correctly labels all points. Hence, H shatters every set of m points on a circle for
every m. Thus VCdim(H) =∞.

Figure 1.3: Convex polygons with unbounded number of edges can shatter any m points
lying on a circle.

Theorem 1.10 (VC dimension of Linear classifiers / Halfspaces). Recall the func-
tion class of halfspaces in Rp

H =
{

sign(〈w, x〉+ b) : w ∈ Rp, b ∈ R
}
.

VCdim(H) = p+ 1.

Proof. To see thatH shatters some set of (p+1) points, consider the points e1, e2, . . . , ep,0 ∈
Rp, where ei is the i-th standard basis vector. Check that for every labelling (y1, . . . , yp+1) ∈
{−1,+1}p+1 of the (p+ 1) points, we can achieve this labelling with w = (y1, . . . , yp) and
b = 1

2yp+1.
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We prove that H cannot shatter any set of (p + 2) points by contradiction. Assume that
the points x1, x2, . . . , xp+2 ∈ Rp can be shattered. Consider the set of p+1 linear equations

(
x1 x2 · · · xp+2

1 1 · · · 1

)
a1
a2
...

ap+2

 = 0 .

Since there are p + 2 variables and p + 1 equations, there is a solution (a1, . . . , ap+2) 6= 0
for the above linear system.8 Let I+ = {i : ai > 0} and I− = {i : ai < 0}. Verify that∑

i∈I+

ai =
∑
i∈I−

|ai| and
∑
i∈I+

aixi =
∑
i∈I−

|ai|xi

Under the assumption that the points are shattered, there exists some hw,b ∈ H that can
label (xi)i∈I+ by +1 and (xi)i∈I− by −1, that is,

〈w, xi〉+ b

{
> 0 for i ∈ I+
< 0 for i ∈ I−

This implies

0 <
∑
i∈I+

ai(〈w, xi〉+ b) =

〈
w,
∑
i∈I+

aixi

〉
+ b

∑
i∈I+

ai

=

〈
w,
∑
i∈I−

|ai|xi

〉
+ b

∑
i∈I−

|ai| =
∑
i∈I−

|ai|(〈w, xi〉+ b) < 0

which is a contradiction. Hence, H cannot shatter p+ 2 points.

Theorem 1.11 (VC dimension of 2-layer neural networks with binary activa-
tion). Consider the following class of 2-layer networks. The input x ∈ Rp. There are N
units in the hidden layer each corresponding to a function

fi(x) = sign(〈wi, x〉+ bi), i = 1, . . . , N.

Let f(x) = (f1(x), . . . , fN (x)) ∈ {±1}N . The output layer contains a single node, which
returns

h(x) = sign(〈w, f(x)〉+ b).

Let H be the class of all such 2-layer networks parameterised by w ∈ RN , w1, . . . , wN ∈ Rp
and b, b1, . . . , bN ∈ R. Then VCdim(H) = O(pN log2(pN)).

8 Another way to look at this: The vectors
(
x1
1

)
, . . . ,

(
xp+2

1

)
are p+ 2 vectors in Rp+1. So they must be

linearly dependent, that is, there must be a1, . . . , ap+2 not all zero such that
∑
i

ai
(
xi
1

)
= 0.
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f1

f2 h

x

Figure 1.4: 2-layer neural network.

Proof. We begin with two claims.

Claim. Let G′ ⊆ Y ′X and G′′ ⊆ Y ′′X be two classes. Define G = G′ × G′′ ⊆ (Y ′ × Y ′′)X as

G = {(g′(·), g′′(·)) : g′ ∈ G′, g′′ ∈ G′′}.

The growth functions satisfy τG(m) ≤ τG′(m)τG′′(m).

To prove this, consider a sequence C of size m. Then

G|C = {(g′,g′′) : g′ ∈ G′|C ,g
′′ ∈ G′′|C}.

Hence, |G|C | = |G′|C | · |G
′′
|C | ≤ τG′(m)τG′′(m).

Claim. Let G′ ⊆ YX and G′′ ⊆ ZY be two classes. Define G = G′′ ◦ G′ ⊆ ZX as

G = {g′′(g′(·)) : g′ ∈ G′, g′′ ∈ G′′}.

The growth functions satisfy τG(m) ≤ τG′(m)τG′′(m).

To prove the claim, observe that for any sequence C = (x1, . . . , xm),

|G|C | =
∣∣{(g′′(g′(x1)), . . . , g

′′(g′(xm))) : g′ ∈ G′, g′′ ∈ G′′
}∣∣

=
∣∣∣{(g′′(g′1), . . . , g

′′(g′m)) : g′ ∈ G′|C , g
′′ ∈ G′′|C

}∣∣∣
=

∣∣∣∣∣∣∣
⋃

g′∈G′|C

{
(g′′(g′1), . . . , g

′′(g′m)) : g′′ ∈ G′′|C
}∣∣∣∣∣∣∣

≤
∑

g′∈G′|C

∣∣∣G′′|g′∣∣∣ ≤ |G′|C |τG′′(m) ≤ τG′(m)τG′′(m).
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We now prove the theorem. Let Hi ⊆ {±1}Rp denote the class of halfspaces correspond-

ing to i-th unit of hidden layer, and H′ ⊆ {±1}RN be the function class of halfspaces
corresponding to the output layer. Hence, H = H′ ◦ (H1 × . . .HN ).

From Theorem 1.10, we have VCdim(Hi) = p+ 1 for all i and VCdim(H′) = N + 1. Using
Sauer’s lemma,

τHi(m) ≤
(
em

p+ 1

)p+1

< (me)p+1, and. τH′(m) ≤
(

em

N + 1

)p+1

< (me)N+1.

Putting this the previous claims,

τH(m) < (me)N(p+1)+N+1 < m6pN

for m > e. We use the fact p ≥ 1 to simplify the relation. Recall if VCdim(H) = d, then
2d = τH(d) and τH(m) < 2m for all m > d.

Claim. For any c > 0, x ≥ 2 and m = 3cx log2 x, we have 2m > mcx.

Verify the inequality in logarithmic form, that is, m > cx log2m. Do this by plugging the
value of m in cx log2 x and then simplifying.

From the above claim it follows that for m ≥ 18pN log2(pN), τH(m) < 2m. Hence,
VCdim(H) = O(pN log2(pN)).



Chapter 2

Probably Approximately Correct
(PAC) learning

In this chapter, we take a different perspective to the theory of generalisation, where
the focus is on how well we can learn a hypothesis class H. The main concept that we
will discuss is the notion of learnability, that is, whether we can learn the best possible
predictor in H upto some error. The Probably Approximately Correct (PAC) framework
was proposed by Leslie Valiant [Valiant, 1984].

2.1 Learnability and connection to VC theory

The focus of Chapter 1 was on the difference between the empirical and true risks. We
derived uniform convergence (Theorem 1.4) — a bound on sup

h∈H

∣∣LS(h)−LD(h)
∣∣ that holds

uniformly for all D. In simple words, the consequence of Theorem 1.4 is that given the
empirical risk of a learned predictor LS(ĥ), we can guess what its true risk would be. In
PAC, we are interested in knowing how large is the true risk LD(ĥ) compared to the best
possible predictor in H, that is, inf

h∈H
LD(h).

Two cases are sometimes considered in PAC learning.
Definition 2.1 (Realisable and agnostic settings). A distribution D on X ×Y is said
to be realisable with respect to a hypothesis class H ⊆ YX if there exists a predictor h∗ ∈ H
such that LD(h∗) = 0. In the agnostic PAC model, there may not exist any h ∈ H such
that LD(h) = 0.

To put it simply, H contains an ideal predictor h∗ in the realisable case, whereas under the
agnostic model, we do not care about the ideal predictor, but would focus only on the best

22



CHAPTER 2. PAC LEARNING 23

possible h ∈ H which achieves the smallest risk inf
h∈H

LD(h). Except some later discussions,

we will not distinguish between the two cases.
Exercise 2.1. Assume Y = {±1}. Recall that we may decompose D into DX , marginal
distribution over X , and PY|X (y|x), the conditional probability for the labels.
Show that if PY|X (y|x) is non-degenerate, D cannot be realisable with respect to any

H ⊆ YX . Give a complete characterisation of D so that it is realisable with respect to H.

Before introducing the notion of learnability, let us see the consequences of VC theory
(Theorem 1.4) in deriving a bound on true risk of ERM. For convenience, define

LD(H) = inf
h∈H

LD(h).

Corollary 2.2 (Error bound for ERM). Let m ≥ 2 ln 4
ε2

and H ⊆ {±1}X has a growth

function τH(·). Assume that the ERM learner A returns the predictor ĥ = A(S) ∈ H. We
have

PS
(
LD(ĥ) > LD(H) + 2ε

)
≤ 4τH(2m) exp

(
−mε2/8

)
,

Hence, for any δ ∈ (0, 1), the risk of ĥ satisfies

LD(ĥ) < LD(H) + 2

√
8
(
ln
(
τH(2m)

)
+ ln

(
4
δ

))
m

with probability 1− δ.

Proof. The proof is left as an exercise. Use Theorem 1.4, and the fact LS(ĥ) = min
h∈H

LS(h)

since ĥ is the solution of ERM. Recall that Theorem 1.4 can also be used to derive a lower
bound for LD(ĥ). Is this possible in the case of Corollary 2.2? Why?

Exercise 2.2. Show that the bound in Corollary 2.2 can be slightly improved to

LD(ĥ) < LD(H) +

√
8
(
ln
(
τH(2m)

)
+ ln

(
4
δ

))
m

+

√
ln
(
2
δ

)
2m

with probability 1− δ.

Corollary 2.2 shows that, τH grows slowly, we can use ERM to learn predictors that are
nearly optimal for the class H. This brings us to the notion of learnability.
Definition 2.3 (Learnability). A hypothesis class H ⊆ YX is agnostic PAC learnable if
there exists a function mH : (0, 1)× (0, 1)→ N and a learner A such that following holds.
For every ε, δ ∈ (0, 1) and every D on X ×Y, when A runs on m ≥ mH(ε, δ) i.i.d. samples
from D, then the output ĥ = A(·) satisfies

LD(ĥ) ≤ LD(H) + ε

with probability 1− δ, where the probability is over the training sample of size m.
If the above statement holds for every D that is realisable with respect to H, then the class
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H is said to be PAC learnable.1

The function mH(ε, δ) is called the sample complexity of learning the class H.

Note that agnostic PAC learnability also implies PAC learnability since the latter focusses
on a restricted set of distributions. Definition 2.3, along with Corollary 2.2, leads to the
following result on learnability of finite VC dimension classes.
Corollary 2.4 (Finite VC dimension classes are PAC learnable). Every hypothesis
class H with a finite VC dimension is agnostic PAC learnable, where ERM is the learner.

2.1.1 No free lunch theorem

The previous discussions suggest that ERM is successful for most function classes. However,
it cannot provide exceptional accuracies in all cases. This is shown in the following no free
lunch theorem, which essentially states that there is no universal algorithm that can learn
all possible function classes using a finite training sample. More precisely, it states that
for every learner and every sample size m, there is a distribution under which the learner
will fail given m training samples.
Theorem 2.5 (No free lunch theorem). Let A be a learner for binary classification

over X . Assume that the training sample size m < |X |
2 . There exists a distribution D on

X × {±1} such that there is a function h ∈ {±1}X with LD(h) = 0, and

PS∼Dm
(
LD(A(S)) ≥ 1

8

)
>

1

7
.

Proof. Let C be a set of 2m samples in X . There are T = 22m functions from C to {±1}.
Call them as h1, . . . , hT . For each hi, define the distribution Di on X × {±1} as

Di(x, y) =

{
1
2m if x ∈ C, y = hi(x)
0 otherwise.

By construction, S ∼ Dmi will sample only pairs of the form (x, hi(x)) for x ∈ C. No
sample outside C will be observed. Note that LDi(hi) = 0 for every i.

We now claim that for every learner A that receives S ∈ (C × {±1})m and returns A(S) :
C → {±1}, it holds that

max
i∈[T ]

ES∼Dmi
[
LDi(A(S))

]
≥ 1

4
. (2.1)

1 Note on the name: The solution of Exercise 2.1 would show that D is realisable if there is an h∗ ∈ H
such that (x, y) ∼ D corresponds to x ∈ DX and y = h∗(x), that is, there is no randomness in y given x. H
is PAC learnable implies that there exists learner A and function mH(ε, δ) so that the obtained predictor

ĥ = A(·) is probably (with probability 1− δ) approximately correct (close to h∗ up to an excess risk of ε).
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Before proving (2.1), we discuss its role in proving Theorem 2.5. The maximum in (2.1)
exceeding 1

4 implies that there is a Di for which the expectation exceeds 1
4 . Thus, for every

learner A, there exists hi and Di so that LDi(hi) = 0 and

ES∼Dmi
[
LDi(A(S))

]
≥ 1

4
.

We now use the following inequality: If Z is a random variable that takes values in [0, 1],
then

P(Z ≥ a) >
E[Z]− a

1− a
for any a ∈ (0, 1). One can prove this using Markov’s inequality (try to prove it or see
Lemma B.1 in Shalev-Shwartz and Ben-David [2018]). Using this inequality, we have

PS∼Dmi

(
LD(A(S)) ≥ 1

8

)
>

ES∼Dmi
[
LDi(A(S))

]
− 1

8

1− 1
8

≥
1
4 −

1
8

1− 1
8

=
1

7

which prove the theorem.

We now prove (2.1). Note that there are Q = (22m)m possible ways to sample m examples
from C. For each such sequence of m examples, there T possible labelling. Hence, for
i ∈ [Q] and j ∈ [T ], define

Si,j = {(x1, fi(x1)), . . . , (xm, fi(xm)}

where Xj = (x1, . . . , xm) ∈ Cm denotes the j-th possible way to sample m examples from
C. Verify that S ∼ Dmi uniformly chooses one of Q possible training sequences Si,1, . . . , Si,Q
and so,

ES∼Dmi
[
LDi(A(S))

]
=

1

Q

Q∑
j=1

LDi(A(Si,j)) .

Since the average lies between maximum and minimum, we write

max
i∈[T ]

ES∼Dmi
[
LDi(A(S))

]
≥ 1

T

T∑
i=1

1

Q

Q∑
j=1

LDi(A(Si,j))

=
1

Q

Q∑
j=1

1

T

T∑
i=1

LDi(A(Si,j))

≥ min
j∈[Q]

1

T

T∑
i=1

LDi(A(Si,j))

Note that the last term fixes a sequence Xj = (x1, . . . , xm) ∈ Cm and then computes the
average over all Di. However, for every such sequence Xj , there a set Cj = {v1, . . . , vp} ⊂ C
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of examples that do not appear in Xj . Verify that |Cj | = p ≥ m. For any function
h : C → {±1},

LDi(h) =
1

2m

∑
x∈C

1 {h(x) 6= hi(x)} ≥ 1

2m

p∑
k=1

1 {h(vk) 6= hi(vk)}

≥ 1

2p

p∑
k=1

1 {h(vk) 6= hi(vk)} .

Averaging over all i ∈ [T ],

1

T

T∑
i=1

LDi(A(Si,j)) ≥
1

T

T∑
i=1

1

2p

p∑
k=1

1 {A(Si,j)(vk) 6= hi(vk)}

=
1

2
· 1

p

p∑
k=1

1

T

T∑
i=1

1 {A(Si,j)(vk) 6= hi(vk)}

≥ 1

2
· min
k∈[p]

1

T

T∑
i=1

1 {A(Si,j)(vk) 6= hi(vk)} .

Note that for every vk, we can group the T functions {h1, . . . , hT } into T/2 pairs such that
every pair (hi, hi′) satisfy

hi(vk) 6= hi′(vk) and hi(x) = hi′(x) ∀x ∈ C\{vk}.

Since vk /∈ Xj , the above implies that Si,j = Si′,j , and so, A(Si,j) = A(Si′,j) and

1 {A(Si,j)(vk) 6= hi(vk)}+ 1
{
A(Si′,j)(vk) 6= hi′(vk)

}
= 1,

which results in

1

T

T∑
i=1

1 {A(Si,j)(vk) 6= hi(vk)} =
1

2

for every k ∈ [p]. Combining all the above steps, we get (2.1).

Let us now look at the implications of Theorem 2.5. One of the straightforward conse-
quences is the following.
Exercise 2.3. Let X be an infinite domain. Prove that {±1}X is not PAC-learnable.
Hint: Use Theorem 2.5 to argue that mH

(
1
8 ,

1
7

)
is infinite.

The result can also be extended to function classes H ⊆ {±1}X that have infinite VC
dimension.
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Corollary 2.6 (Infinite VC dimension classes are not PAC learnable). Let X be
an infinite domain and let H ⊆ {±1}X with VCdim(H) =∞. Let A be a learner such that
outputs function from H. For every sample size m, there exists a distribution D realisable
with respect to H such that

PS∼Dm
(
LD(A(S)) ≥ 1

8

)
>

1

7
.

Proof. (Exercise) Modify the proof of Theorem 2.5 by starting with a C of size 2m that is
shattered by H. If VCdim(H) =∞, this can be done for arbitrarily large C.

Remark (No free lunch vs learnability of finite VC dimension classes). Note that Theo-
rem 2.5 does not contradict the previous conclusion about learnability of finite VC classes
(Corollary 2.4). Assume ε < 1

8 and δ < 1
7 . In the agnostic case, Corollary 2.4 states that

some learner (ERM), when trained on mH(ε, δ) samples, ensures that for every D,

LD(ĥ) ≤ inf
h∈H

LD(h) + ε with probability 1− δ.

On the other hand, Theorem 2.5 states that no learner (including ERM) can achieve

LD(ĥ) ≤ ε with probability 1− δ

for every D. The results together assert that an approximation error, in the form of
LD(H) = inf

h∈H
LD(h), is possibly unavoidable in learning. Note that this can be avoided if

LD(H) = 0 (for instance, using linear classifiers in linearly separable problems).

2.1.2 Fundamental theorem of statistical learning

No free lunch theorem and uniform convergence results, taken together, leads to the conclu-
sion that finite VC dimension is necessary and sufficient for PAC learnability. This is part of
the fundamental theorem of statistical learning. The theorem, as stated in Shalev-Shwartz
and Ben-David [2018], touches upon a related concept known as uniform convergence prop-
erty. For the sake of completeness, we define this property before stating the fundamental
theorem.
Definition 2.7 (Uniform convergence property). A hypothesis class H ⊆ YX is said
to have the uniform convergence property (with respect to a loss `) if there exists a function
muc
H : (0, 1)× (0, 1)→ N such that for every ε, δ ∈ (0, 1) and every distribution D on X ×Y,

then any sample S ∼ Dm with m ≥ mH(ε, δ) satisfies

sup
h∈H
|LS(h)− LD(h)| ≤ ε with probability 1− δ.
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Observe that the uniform convergence property is another way of stating that generalisation
error bounds in Chapter 1 can be made smaller than ε by controlling the training sample
size.
Theorem 2.8 (Fundamental theorem of statistical learning (binary classifica-
tion)). Let H ⊆ {±1}X and let the loss function be the 0-1 loss. Then the following are
equivalent:

1. H has finite VC dimension.

2. H has uniform convergence property.

3. Any ERM rule is a successful agnostic PAC learner for H.

4. H is agnostic PAC learnable.

5. H is PAC learnable.

6. Any ERM rule is a successful PAC learner for H.

Proof. (Exercise) Combine all previous theorems. You can prove 1 =⇒ 2 =⇒ 3,
3 =⇒ 4 =⇒ 5, and 3 =⇒ 6 =⇒ 5. Finally, 5 =⇒ 1 can be proved by contradiction
based on Corollary 2.6.

The fundamental theorem of statistical learning also holds for some other learning problems
(for instance, regression). This requires generalisation of VC dimension for such problems.
We will not cover this.

There is a quantitative version of the fundamental theorem (see Theorem 6.8 in Shalev-
Shwartz and Ben-David [2018]). We look at a part of this result below. The following
theorem shows both an upper and a lower bound for the sample complexity mH(ε, δ).
Theorem 2.9 (Sample complexity for finite VC dimension classes). Let H ⊆
{±1}X have VCdim(H) = d < ∞. Then there exists constants C1, C2 > 0 such that H is
agnostic PAC learnable with sample complexity

C1
d+ log2(

1
δ )

ε2
≤ mH(ε, δ) ≤ C2

d log2(
d
ε ) + ln(1δ )

ε2
.

Proof. The upper bound follows from Corollary 2.2, and is left as an exercise. The lower
bound may be viewed as a quantitative version of no free lunch theorem. See the proof is
Section 28.2 of Shalev-Shwartz and Ben-David [2018].
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2.2 Computational aspect of learning

So far, we have been only concerned about whether we can learn H from a finite number
of samples. The conclusion was that, as long as VCdim(H) < ∞, the class H can be
successfully learned using mH(ε, δ) number of samples. However, the learning problem
could be computationally hard, that is, may have an exponential time complexity. A
valid question would be exponential in which parameter? This is slightly confusing in
comparison to measuring complexity of typical algorithms such as sorting. Note that the
key parameters are ε, δ, which control the level of accuracy. There could be two sources of
exponential computational complexity.

The first possibility is that the sample complexity is exponential, that is, mH(ε, δ) is expo-
nential in 1

ε or 1
δ . Theorem 2.9, or its improved variant, rules out this possibility, stating

that mH(ε, δ) = O
(
d+ln( 1

δ
)

ε2

)
. The other possibility is that a successful learner takes expo-

nential time to return the output, that is, the learner runs in time exponential with respect
to 1

ε or 1
δ .

Exercise 2.4 (Worst-case computational time for ERM). Suppose that ERM is
used to learn H ⊆ {±1}X where VCdim(H) = d <∞. There exists an implementation of
ERM that runs in time exponential in d, 1ε and polynomial in 1

δ .
Does the result change if the (PAC) learner is given m � mH(ε, δ) training samples such
that m is exponential in 1

ε ,
1
δ .

In some cases, however, ERM (or other learners) can be implemented in polynomial time,
particularly in the realisable case.
Example 5 (Decision stumps). Recall the class of decision stumps H ⊆ {±1}R,

H = {ht,b : ht,b(x) = b for x ≤ t, and ht,b(x) = −b for x > t}.

Consider the realisable setting, that is, there is a true function ht∗,b∗ such that the training
data S = {(xi, yi)}mi=1 satisfies yi = ht∗,b∗(xi).
Verify that the following is an ERM solution in the realisable case.

1. Let i1 = arg min
i

xi, and set b̂ = yi1 . . . takes O(m) time

2. Let i2 = arg max
i:yi=b̂

xi, and i3 = arg min
i:yi=−b̂

xi . . . takes O(m) time

3. Set t̂ = 1
2(xi2 + xi3), and return the predictor h

t̂,̂b
∈ H.

Observe that the above procedure successfully PAC learns in poly
(
1
ε ,

1
δ

)
time.2

Exercise 2.5. Derive an ERM procedure that is a successful agnostic PAC learner, and
runs in worst case O(m2) time. Hint: O(m2) time is due to sorting x1, . . . , xm.

2 poly (a, b, . . . , z) means polynomial in each of the variables a, . . . , z.
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2.2.1 Efficient learning algorithm

The notion of efficient learner is introduced differently in various texts. We will consider
a simplified version of the definition in Shalev-Shwartz and Ben-David [2018].
Definition 2.10 (Time complexity of learner). Assume that the loss function is `,
and consider a learner A.

1. Given a function f : (0, 1)2 → N and a class H ⊆ YX , we say that A learns the class
H in O(f) times if:

• A is (agnostically) PAC learns H, and

• for every distribution D and every ε, δ ∈ (0, 1), given training set S sampled
i.i.d. from D, the output ĥ = A(S) is determined in O(f((ε, δ)) time and ĥ(·)
can also be computed in O(f((ε, δ)) time.

2. Consider a sequence of classes (Hp)∞p=1 such that Hp ⊆ YXp. Given a function

g : N× (0, 1)2 → N, we say that the runtime of A with respect to (Hp)∞p=1 is O(g) if,
for every p ∈ N, we can define a function fp(ε, δ) = g(p, ε, δ) such that A learns Hp
in O(fp) time.

3. We say A is efficient with respect to (Hp)∞p=1 if g is poly
(
p, 1ε ,

1
δ

)
.

The introduction of a sequence of classes (Hp)∞p=1 is abrupt, and needs further explanation.
The typical example is where p governs the dimension of the domain space, for instance,
Xp = Rp. For instance, linear classifiers or SVMs can be used for binary classification for
every Rp, and hence, it is natural to consider the time complexity of a learner with respect
to the problem dimension — an exponential dependence on dimension is not desirable,
particularly for high-dimensional binary classification.
Exercise 2.6. Read Sections 8.2.2–8.2.4 in Shalev-Shwartz and Ben-David [2018] which
discuss the time complexity of ERMs for learning axis-parallel rectangles and Boolean
conjunctions.
Exercise 2.7 (Efficient ERM for multi-dimensional decision stumps). The class
of decision stumps Hp ⊆ {±1}Rp is the class of functions {ht,b,i : t ∈ R, b ∈ {±1}, i ∈ [p]}
such that

ht,b,i(x) =

{
b if x(i) ≤ t
−b if x(i) > t,

where x(i) denotes the i-th coordinate of x ∈ Rp.
Extend the algorithm of Exercise 2.5 to obtain a successful agnostic PAC learner that runs
in O(pm2) time.
Hint: Scan along each dimension, and apply ERM to obtain p 1-dimensional decision
stumps. Among the p solutions, choose the one with minimum empirical risk.
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Figure 2.1: 2-dimensional decision stumps (red boundaries). Left one minimises empirical
risk horizontally, and right one is minimiser along vertical direction.

2.2.2 Perceptron

Decision stumps in Rp correspond to axis-aligned linear classifiers. We now analyse the
batch perceptron algorithm, which efficiently PAC learns the class of linear classifiers in
Rp

H = {h(x) = sign(〈w, x〉+ b) : w ∈ Rp, b ∈ R},

in the realisable case. Recall that VCdim(H) = p+ 1. The algorithm is as follows.3

Algorithm 1: Batch perceptron

Input: Training samples S = {(x1, y1), . . . , (xm, ym)}
Set b1 = 0, w1 = 0
for t = 1, 2, . . . do

if ∃(xi, yi) ∈ S such that yi(〈wt, xi〉+ bt) ≤ 0 then
wt+1 ← wt + yixi and bt+1 ← bt + yi

end
return Linear classifier hwt,bt

end

We analyse the convergence and time complexity of Algorithm 1 in the realisable case, that
is, there is w◦ ∈ Rp, bcirc ∈ R such that for every (x, y)

y = sign(〈w◦, x〉+ b◦), or equivalently, y(〈w◦, x〉+ b◦) > 0.

When the above assumption holds, we say that the data is separable.

3 The perceptron algorithm is typically used in online learning, where training samples arrive in a
streamed manner. The presented version is called batch perceptron since, instead of data arriving in a
stream, it is available as a batch. More generally, the setting that we have studied — S ∼ Dm is available
up front — is known as the batch setting.
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Theorem 2.11 (Convergence of batch perceptron). Assume that (x1, y1), . . . , (xm, ym)
are separable. Define R = maxi ‖xi‖2, where ‖ · ‖2 denotes the Euclidean norm. Let

B = min
{√
‖w‖22 + b2 : yi(〈w, xi〉+ b) ≥ 1 ∀i ∈ [m]

}
. Then Algorithm 1 converges in at

most (RB)2 iterations, and the solution achieves minimum empirical risk.

Proof. The last part is straightforward. If Algorithm 1 converges, we have yi(〈w, xi〉+b) > 0
for every i ∈ [m], that is, it achieves zero training error, or equivalently, minimises the
empirical risk.

To prove convergence, we first argue that if the data is separable, then one can find (w, b)
such that yi(〈w, xi〉+ b) ≥ 1 for all i ∈ [m]. To see this, let (w′, b′) satisfies the separability
assumption yi(〈w′, xi〉 + b′) > 0 ∀i, and define γ = mini yi(〈w′, xi〉 + b′). Verify that

yi

(〈
w′

γ , xi

〉
+ b′

γ

)
≥ 1 for all i ∈ [m].

For the rest of the proof, see proof of Theorem 9.1 in Shalev-Shwartz and Ben-David
[2018]. Note that, in the book, the problem is transformed as follows: Map every x ∈ Rp
to x̃ = (x, 1) ∈ Rp+1 and denote w̃ = (w, b). Then we can write H as H = {sign(〈w̃, x̃〉)},
the class of homogeneous linear classifiers in Rp+1. In this case, we need to only update w̃,
and analyse the convergence of these updates.

We will possibly return to the perceptron algorithm later, if we cover online learning. Note
that the batch perceptron may not converge in the agnostic case.
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