
Liquid Types

Manuel Eberl
<eberlm@in.tum.de>

April 29, 2013

1 Introduction
The purpose of type systems has always been to prevent certain errors, to guarantee, at compile time,
certain run time behaviour of programmes. Type systems vary in their expressiveness, and consequently
in the strength of the guarantees that they can provide. Simple, “dynamic” type systems, such as the one
used by PHP, provide no guarantees whatsoever, whereas powerful type systems with dependent types,
such as the one used by Idris, can express arbitrarily complex restrictions.

However, this expressiveness comes, of course, at the cost of undecidability. As a consequence of Rice’s
theorem, no non-trivial property of the behaviour of a programme is decidable, so type checking and
type inference in expressive type systems is, in general, also undecidable. Idris solves this problem by
demanding user-supplied proofs when the system cannot prove welltypedness automatically. Needless
to say, this can get rather laborious.

To avoid this, most practical programming languages that provide a strong type system restrict
themselves to less expressive types that can be checked and inferred automatically. The most commonly
used functional programming languages – ML, OCaml and Haskell – use higher order static type systems,
sometimes with some extensions such as polymorphism, existential types and type classes, but often,
the user would like to specify stronger restrictions: for instance, one could imagine a division function
that requires the divisor to be nonzero, or an array access function that requires the index to be in range.
In most programming languages, these values trigger (unwanted) runtime exceptions. Of course, it
would be much better to have a type system that guarantees that such errors cannot occur at runtime,
by rejecting programmes that e.g. use division with a potentially zero divisor. Naturally, while some
overapproximation is necessary, one would also like such a type system to be “clever” enough to not reject
too many correct programmes either.

Liquid Types is such a type system. It provides types that are powerful enough to express restrictions
like these, but still weak enough for type checking and type inference to work well automatically in most
practical cases.

2 Definitions
Refinement types are central to the idea of liquid types. A refinement type is a certain subtype of a “regular”
type, such as Int or List, with an additional constraint on the value, such as {ν : Int | ν 6= 0} or {ν :
α List | len(ν) = 5}1. Refinement types can be used to encode preconditions and postconditions of
functions; one example would be the replicate function, which takes some value v of type a and a non-
negative integer n and returns a list of length n containing only the value v, e.g. replicate 2 3 = [2, 2, 2]. In
a type system with refinement types, a possible type of this function that captures the property that the
length of the list replicate produces always has exactly as many elements as requested, could be:

replicate :: a→ n : {ν : Int | ν ≥ 0} → {ν : List a | len(ν) = n}

With this, the typechecker will reject any implementation of replicate that does not satisfy this property.
Also, the compiler may be able to infer that access to elements of that list with an index of < n are safe,
which guarantees safety and makes compile-time optimisation of the accesses possible.

The idea of liquid types is now to restrict the form of these contraints to a conjunctions of a small set of
atomic qualifiers from a decidable fragment of the underlying logic, which allows efficient type checking
and inference. For instance, the original paper [RKJ08] uses the following set of qualifiers, or “qualifier
templates” as an example:

Q = {0 ≤ ν, ∗ ≤ ν, ν < ∗, ν < len(∗)}
1ν simply stands for “the value we are talking about at the moment”, i.e. the value is described by the type

1

The ∗ symbol here is a placeholder for any variable in the context of the expression in question,whereas
ν is a placeholder that refers to the value that the type refers to. Consider, for instance, a function with
integer parameters x and y. The set of valid qualifiers is obtained from the templates by instantiating ∗
with all appropriate variables in the context – in this case x and y:2

QΓ = {0 ≤ ν, x ≤ ν, ν < x, y ≤ ν, ν < y}

Any conjunction of qualifiers from this set is a valid liquid type. For instance, 0 ≤ ν ∧ ν < y ∧ ν < x
would be valid, but ν < 0 or 0 ≤ ν ∨ ν < y would be invalid. The concrete set of qualifiers Q varies
depending on the nature of the guarantees that the liquid types are supposed to provide, but it should
contain only qualifiers that the theorem prover can handle. Also, the more qualifiers are allowed, the
more computation time type checking/inference will require. The implementation of the authors of the
original paper uses constraints of the form ν ./ X , where ./ is any of the relations ≤, <, =, >, ≥, 6=, and
X is 0, ∗, or len(∗). More structural properties about algebraic datatypes, such as ν 6= None can also be
added.

3 Type inference
Liquid type inference works in three steps:
Hindley-Milner type inference: this is the “standard” type inference algorithm, which can be seen as

inferring an “overapproximation” of the desired liquid types where all liquid type constraints are
set to True. Consequently, the following steps should refine these to more precise types. In order to
do that, every “basic” type3 assigned a liquid type variable κ that contains constraints that are yet
to be determined. For instance, Int→ Int→ Int becomes x : {ν : Int | κ1} → y : {ν : Int | κ2} → {ν :
Int | κ3}. This is referred to as the liquid type template andmay be abbreviated as x : κ1 → y : κ2 → κ3

when the basic types are irrelevant or clear from the context.

Liquid constraint generation: in this step, a set of rules4 is applied to the programme in order to find
constraints for the liquid type variables. The rules fall into three categories:

Liquid type checking rules: syntax-directed rules that produce subtyping and wellformedness
constraints

Subtyping rules: required to solve the subtyping obligations produced by the liquid type checking
rules

Wellformedness rules: a constraint is well-formed if it only contains valid qualifiers, instantiated
with variables from the context. In particular, the constraints must, of course, not contain any
variables that do not occur in the context.

To keep things simple, we will ignore the wellformedness rules and implicitly assume that we always
have well-formed liquid types.

Constraint solving The system of constraints is solved iteratively using an SMT solver. Initially, all liquid
type variables are set to the strongest value possible, i.e. the conjunction of all valid qualifiers. The
solving algorithm then looks for any unsatisfied constraints and weakens the liquid type variables
involved so that the constraint is fulfilled, until no unsatisfied constraints remain.5

This approach is called iterative weakening, as we start out with the strongest restrictions possible on
every basic type in our programme and weaken the assignment just enough for the constraints to
be fulfilled. The result is an assignment that assigns every liquid type variable the most restrictive
liquid type possible in order to provide the maximum amount of information about the values.
Let us now look at the constraints in question. Since we ignored the wellformedness constraints,
the only “interesting” kind of constraints is the subtyping constraints: a constraint of the form
Γ ` κ1 <: κ2 requires that κ2 is implied by the context Γ and the liquid type variable κ1. For instance,
if Γ = x : {ν : Int | ν ≥ 0} and κ1 = x < ν and κ2 = 0 < ν the statement Γ ` κ1 <: κ2 is true, since
x ≥ 0 and ν > x implies ν > 0. Since we restricted ourselves to a finite number of qualifiers and
a decidable logic, we can resolve an unsatisfied subtyping constraint Γ ` κ1 <: κ2 by looking at
all qualifiers in κ2 one by one and, using a decision procedure for our logic, removing those that
are not implied by Γ and κ1. This approach makes sure that we only weaken the κi as much as we
absolutely have to.

2The ν < len(∗) qualifier was not instantiated here, because it requires ∗ to be an array and x and y were assumed to be integers
3“Basic” meaning “non-composed”. For instance, the composed type Int→ Int contains two basic types, namely two Int.
4for the exact rules, refer to the original paper by Rondon et al. [RKJ08]
5 Or there are no more constrants that can be weakened, in which case the algorithm outputs an error message. For example, if

we have a replicate function with the type as above as a rigid type constraint and call it with the second parameter−1, the algorithm
would have to weaken our rigid constraint, which it must not do.

2

4 Example
As an example, take the following programme:

max (a :: Int) (b :: Int) = if a < b then b else a

This can be seen as the definition of the constant max as:

λa :: Int. λb :: Int. if a < b then b else a

Hindley-Milner tells us that the type of the max function is:

Int→ Int→ Int

Therefore, the liquid type template is:

a : {ν : Int | κ1} → b : {ν : Int | κ2} → {ν : Int | κ3}

The next step is constraint generation. We have to use the liquid typing rules on the expression6

if a < b then b else a

in the context
Γ = [a : {ν : Int | κ1}; b : {ν : Int | κ2}]

The context tells us what variables exist and what types they have. In our case, we know they are integers
and that they fulfil the (still unknown) liquid predicate κ1 resp. κ2. Since we have an if expression, we
need to apply the corresponding rule for typing if expressions:

Γ `Q a < b : Bool Γ; a < b `Q b : κ3 Γ; b ≤ a `Q a : κ3

Γ `Q if a < b then b else a : κ3

The premise about a < b can be ignored, since we already know it is well-typed from Hindley-Milner;
the interesting part is the other two premises: They say that in order to derive some liquid type κ3 for the
if expression, we have to show that both the then branch and the else branch return a value that satisfies
this liquid predicate κ3, but we can use the fact that the if condition is fulfilled (resp. not fulfilled) as an
additional assumption when doing this, so this assumption is added to the context. This feature is known
as path sensitivity.

Let us now look at the first condition, the one for the then branch: intuitively, we know that b has
type κ2, but we are required to show that it has type κ3. The only way to show this is to show that κ2 is a
subtype of κ3, i.e. κ3 is a more general property than κ2. This is done using the subtyping rule, which
demands that, in the given context, κ2 implies κ3:

Γ; a < b `Q b : {ν : Int | ν = b}
Γ; a < b � ν = b⇒ κ3

Γ; a < b ` {ν : Int | ν = b} <: {ν : Int | κ3}
Γ; a < b `Q b : {ν : Int | κ3}

The proof of the condition of the else branch is analogous:

Γ; b ≤ a `Q a : {ν : Int | ν = a}
Γ; b ≤ a � ν = a⇒ κ3

Γ; b ≤ a ` {ν : Int | ν = a} <: {ν : Int | κ3}
Γ; b ≤ a `Q a : {ν : Int | κ3}

If we look at the very top of these trees, we see that the following two conditions remain:

Γ; a < b � ν = b⇒ κ3 and Γ; b ≤ a � ν = a⇒ κ3

These are now the conditions we have to work with. Ordinarily, the constraint solving algorithm
would initialise all the κi with all qualifiers in QΓ, and since the function is not called in our programme,
there are no constraints for κ1 and κ2, they would remain this way. For demonstration purposes, let us
therefore assume we have some other function in our programme that actually calls the max function
with integer values about which we know nothing (i.e. {ν : Int | True}). In that case, we will have the
additional constraints:

True⇒ κ1 and True⇒ κ2

6To be more precise, we first have to apply the liquid typing rule for λ abstraction to the expression, but these do nothing except
“stripping away” the λ and adding the bound variables to the context, so we skipped this step.

3

These constraints are, of course, unsatisfied for the initial assignment of all qualifiers, which is why the
algorithm has to weaken them down to the empty set of qualifiers, i.e. True.

We then have to worry about our original constraints, which, with the current assignment of [κ1 7→
True, κ2 7→ True] are basically equivalent to:

(a < b⇒ κ3) and (b ≤ a⇒ κ3)

The theorem prover iterates over all the allowed qualifiers for κ3 and finds that the only ones that fulfil
the constraints are a ≤ ν and b ≤ ν, leading to the following type for max:

a : {ν : Int | True} → b : {ν : Int | True} → {ν : Int | a ≤ ν ∧ b ≤ ν}

5 In practice
There are a number of real world implementations of Liquid Types for different languages. The authors of
the original paper [RKJ08] gave an implementation forOCaml. Another very sophisticated implementation
is LiquidHaskell [Jha], which supports a great number of additional features, such as liquid types for
algebraic datatypes and user-defined liquid predicates; an online demo can be found at http://goto.
ucsd.edu/~rjhala/liquid/haskell/demo/.

References
[Jha] Ranjit Jhala, Liquid Haskell, http://goto.ucsd.edu/~rjhala/liquid/haskell/blog/about/.

[RKJ08] Patrick M. Rondon, Ming W. Kawaguchi, and Ranjit Jhala, Liquid types.

[Ron12] Patrick M. Rondon, Liquid types, Ph.D. thesis, University of California, 2012.

4

http://goto.ucsd.edu/~rjhala/liquid/haskell/demo/
http://goto.ucsd.edu/~rjhala/liquid/haskell/demo/
http://goto.ucsd.edu/~rjhala/liquid/haskell/blog/about/

	Introduction
	Definitions
	Type inference
	Example
	In practice

