
Liquid Types

Manuel Eberl

April 29, 2013



Prelude – Type Systems



Prelude

What is a type system?

A way of classifying expressions by the kind of values

they compute

What are they for?

To guarantee the absence of certain undesired or

unintended behaviour

What kinds of type systems are there?

Well. . .



Prelude

What is a type system?

A way of classifying expressions by the kind of values

they compute

What are they for?

To guarantee the absence of certain undesired or

unintended behaviour

What kinds of type systems are there?

Well. . .



Prelude

What is a type system?

A way of classifying expressions by the kind of values

they compute

What are they for?

To guarantee the absence of certain undesired or

unintended behaviour

What kinds of type systems are there?

Well. . .



Prelude

What is a type system?

A way of classifying expressions by the kind of values

they compute

What are they for?

To guarantee the absence of certain undesired or

unintended behaviour

What kinds of type systems are there?

Well. . .



Prelude

What is a type system?

A way of classifying expressions by the kind of values

they compute

What are they for?

To guarantee the absence of certain undesired or

unintended behaviour

What kinds of type systems are there?

Well. . .



Prelude

What is a type system?

A way of classifying expressions by the kind of values

they compute

What are they for?

To guarantee the absence of certain undesired or

unintended behaviour

What kinds of type systems are there?

Well. . .



Dynamic typing

Only one type: Any

Give no information or guarantees whatsoever

Used by: Python, JavaScript, PHP, . . .



Dynamic typing

This is a very bad idea. Why? Enter Python:
a = "foo"
b = 42
print(b - a)

Compiles without problems, but at runtime:

TypeError: unsupported operand type(s) for -:
’int’ and ’str’

Leads to unnecessary errors and/or erratic behaviour

(cf. Bernhardt, 2012: “Wat”, http://youtu.be/kXEgk1Hdze0)

http://youtu.be/kXEgk1Hdze0


Dynamic typing

This is a very bad idea. Why? Enter Python:
a = "foo"
b = 42
print(b - a)

Compiles without problems, but at runtime:

TypeError: unsupported operand type(s) for -:
’int’ and ’str’

Leads to unnecessary errors and/or erratic behaviour

(cf. Bernhardt, 2012: “Wat”, http://youtu.be/kXEgk1Hdze0)

http://youtu.be/kXEgk1Hdze0


Dynamic typing

This is a very bad idea. Why? Enter Python:
a = "foo"
b = 42
print(b - a)

Compiles without problems, but at runtime:

TypeError: unsupported operand type(s) for -:
’int’ and ’str’

Leads to unnecessary errors and/or erratic behaviour

(cf. Bernhardt, 2012: “Wat”, http://youtu.be/kXEgk1Hdze0)

http://youtu.be/kXEgk1Hdze0


Static typing

Different types that correspond to “sorts” of values

(e.g. Integer, String, Boolean)

Guarantees the absence of type errors

Used by: Java, C, Pascal



Static typing

The same thing in Java:

String a = "foo";
int b = 42;
System.out.println(b - a);

Compile time (!) error tells us something is wrong:

error: bad operand types for binary operator ’-’
System.out.println(b - a);

ˆ
first type: int
second type: String

But: we have to annotate types (“String” resp. “int”)



Static typing

The same thing in Java:

String a = "foo";
int b = 42;
System.out.println(b - a);

Compile time (!) error tells us something is wrong:

error: bad operand types for binary operator ’-’
System.out.println(b - a);

ˆ
first type: int
second type: String

But: we have to annotate types (“String” resp. “int”)



Static typing, but fancy

One nice addition: type inference

Same guarantees, but less work

Used by: Standard ML, OCaml, Haskell, . . .

Down side: none!



Type inference

Type inference: compiler figures out types (mostly) without

annotations. Same as before, now in Scala:

val a = "foo"
val b = 42
System.out.println(b - a)

Again: compile time error:

error: overloaded method value - with alternatives:
(x: Double)Double <and>
(x: Float)Float <and> ...

cannot be applied to (java.lang.String)
System.out.println(b - a);

ˆ
Both the safety of static typing and the convenience of dynamic

typing!



Type inference

Type inference: compiler figures out types (mostly) without

annotations. Same as before, now in Scala:

val a = "foo"
val b = 42
System.out.println(b - a)

Again: compile time error:

error: overloaded method value - with alternatives:
(x: Double)Double <and>
(x: Float)Float <and> ...

cannot be applied to (java.lang.String)
System.out.println(b - a);

ˆ
Both the safety of static typing and the convenience of dynamic

typing!



Dependent types

So we can prevent errors caused by values being of the wrong

“sort”, i.e. string instead of number.

But what about errors that are caused by restrictions on the actual

values?

dereferencing a null pointer

array bounds violation

division by zero

Can we express restrictions on values in a type system as well?



Dependent types

So we can prevent errors caused by values being of the wrong

“sort”, i.e. string instead of number.

But what about errors that are caused by restrictions on the actual

values?

dereferencing a null pointer

array bounds violation

division by zero

Can we express restrictions on values in a type system as well?



Dependent types

Example 1: Integer division

Takes two integers, returns a rational number:

(/) :: Int→ Int→ Rational

But the second operand must not be 0. So what we want is:

(/) :: Int→ {ν : Int | ν 6= 0} → Rational



Dependent types

Example 1: Integer division

Takes two integers, returns a rational number:

(/) :: Int→ Int→ Rational

But the second operand must not be 0. So what we want is:

(/) :: Int→ {ν : Int | ν 6= 0} → Rational



Dependent types

Example 2: List concatenation

Take two lists, return the concatenated list:

(++) :: List a→ List a→ List a

But we lose some interesting information, e.g. about the result

list’s length.

What we want is something like:

(++) :: List a m→ List a n→ List a (m + n)



Dependent types

Example 2: List concatenation

Take two lists, return the concatenated list:

(++) :: List a→ List a→ List a

But we lose some interesting information, e.g. about the result

list’s length. What we want is something like:

(++) :: List a m→ List a n→ List a (m + n)



Dependent types

Types can have arbitrary restrictions and depend on values

Guarantees of arbitrary complexity

Used by: Dependent ML, Idris

Down side: type checking/inference undecidable, may

require user-supplied proofs

=⇒ A lot of work!



Liquid Types

Compromise: Liquid Types

Restrict power of dependent types to decidable fragment

=⇒ inference of expressive types without user interaction



Liquid Types



Definition of Liquid Types

Basic idea:

Take normal types as inferred by Hindley/Milner

Augment them with a specific kind of conditions (Refinement

Types), i.e. linear constraints such as

{ν : Int | ν > 0} or k : Int→ {ν : Int | ν ≤ k}
Allowed conditions should be powerful enough to say

something interesting, but weak enough to allow automatic

type inference

Not all programmes that are of type T can be recognised as

such by type checking/inference



Definition of Liquid Types

Basic idea:

Take normal types as inferred by Hindley/Milner

Augment them with a specific kind of conditions (Refinement

Types), i.e. linear constraints such as

{ν : Int | ν > 0} or k : Int→ {ν : Int | ν ≤ k}

Allowed conditions should be powerful enough to say

something interesting, but weak enough to allow automatic

type inference

Not all programmes that are of type T can be recognised as

such by type checking/inference



Definition of Liquid Types

Basic idea:

Take normal types as inferred by Hindley/Milner

Augment them with a specific kind of conditions (Refinement

Types), i.e. linear constraints such as

{ν : Int | ν > 0} or k : Int→ {ν : Int | ν ≤ k}
Allowed conditions should be powerful enough to say

something interesting, but weak enough to allow automatic

type inference

Not all programmes that are of type T can be recognised as

such by type checking/inference



Definition of Liquid Types

Basic idea:

Take normal types as inferred by Hindley/Milner

Augment them with a specific kind of conditions (Refinement

Types), i.e. linear constraints such as

{ν : Int | ν > 0} or k : Int→ {ν : Int | ν ≤ k}
Allowed conditions should be powerful enough to say

something interesting, but weak enough to allow automatic

type inference

Not all programmes that are of type T can be recognised as

such by type checking/inference



Definition of Liquid Types

Example for the rest of the talk: simple equality/inequality

constraints

Conditions are conjunctions of qualifiers from e.g.:

Q = {0 ≤ ν, ν = ∗, ∗ ≤ ν}

Example:

array get::
a : Array v→ {ν : Int | 0 ≤ ν ∧ ν < len(a)} → v

=⇒ Compile-time guarantee: no array-bounds violations

=⇒ Compiler can drop bounds checks



Definition of Liquid Types

Example for the rest of the talk: simple equality/inequality

constraints

Conditions are conjunctions of qualifiers from e.g.:

Q = {0 ≤ ν, ν = ∗, ∗ ≤ ν}

Example:

array get::
a : Array v→ {ν : Int | 0 ≤ ν ∧ ν < len(a)} → v

=⇒ Compile-time guarantee: no array-bounds violations

=⇒ Compiler can drop bounds checks



Liquid Type Inference

1 Run Hindley-Milner to obtain liquid type template

2 Use syntax-directed rules to generate system of constraints

3 Solve constraints using theorem prover



Liquid Type Inference – Hindley-Milner

Hindley-Milner: standard type inference algorithm for functional

languages

Example:

We want to type:

max (a :: Int) (b :: Int) = if a < b then b else a

We reason:

the parameters a and b are of type Int.

a < b is condition in an if, thus a < b :: Bool – okay

the if expression returns a or b, thus a and b have the same type as the

result

therefore, the most precise result type is Int.

max :: Int→ Int→ Int



Liquid Type Inference – Hindley-Milner

Hindley-Milner: standard type inference algorithm for functional

languages

Example:

We want to type:

max (a :: Int) (b :: Int) = if a < b then b else a
We reason:

the parameters a and b are of type Int.

a < b is condition in an if, thus a < b :: Bool – okay

the if expression returns a or b, thus a and b have the same type as the

result

therefore, the most precise result type is Int.

max :: Int→ Int→ Int



Liquid Type Inference – Hindley-Milner

Hindley-Milner: standard type inference algorithm for functional

languages

Example:

We want to type:

max (a :: Int) (b :: Int) = if a < b then b else a
We reason:

the parameters a and b are of type Int.

a < b is condition in an if, thus a < b :: Bool – okay

the if expression returns a or b, thus a and b have the same type as the

result

therefore, the most precise result type is Int.

max :: Int→ Int→ Int



Liquid Type Inference – Hindley-Milner

Hindley-Milner: standard type inference algorithm for functional

languages

Example:

We want to type:

max (a :: Int) (b :: Int) = if a < b then b else a
We reason:

the parameters a and b are of type Int.

a < b is condition in an if, thus a < b :: Bool – okay

the if expression returns a or b, thus a and b have the same type as the

result

therefore, the most precise result type is Int.

max :: Int→ Int→ Int



Liquid Type Inference – Hindley-Milner

Hindley-Milner: standard type inference algorithm for functional

languages

Example:

We want to type:

max (a :: Int) (b :: Int) = if a < b then b else a
We reason:

the parameters a and b are of type Int.

a < b is condition in an if, thus a < b :: Bool – okay

the if expression returns a or b, thus a and b have the same type as the

result

therefore, the most precise result type is Int.

max :: Int→ Int→ Int



Liquid Type Inference – Hindley-Milner

Hindley-Milner: standard type inference algorithm for functional

languages

Example:

We want to type:

max (a :: Int) (b :: Int) = if a < b then b else a
We reason:

the parameters a and b are of type Int.

a < b is condition in an if, thus a < b :: Bool – okay

the if expression returns a or b, thus a and b have the same type as the

result

therefore, the most precise result type is Int.

max :: Int→ Int→ Int



Liquid Type Inference – Hindley-Milner

Example:

More formally: type derivation tree:

Context Γ = [a : Int; b : Int]

Γ(a) = Int

Γ ` a : Int

Γ(b) = Int

Γ ` b : Int
Γ ` a < b : Bool

Γ(b) = Int

Γ ` b : Int

Γ(a) = Int

Γ ` a : Int
Γ ` if a < b then b else a : Int



Liquid Type Inference – Hindley-Milner

So Hindley-Milner can give us “normal” types for expressions.

How do we get liquid types out of that?

=⇒ introduce liquid type variable κ for each “base type”

=⇒ liquid type template

Example:

Programme:

max (a :: Int) (b :: Int) = if a < b then b else a

HM type:

a : Int→ b : Int→ Int

Liquid type template:

a : {ν : Int | κa} → b : {ν : Int | κb} → {ν : Int | κr}



Liquid Type Inference – Hindley-Milner

So Hindley-Milner can give us “normal” types for expressions.

How do we get liquid types out of that?

=⇒ introduce liquid type variable κ for each “base type”

=⇒ liquid type template

Example:

Programme:

max (a :: Int) (b :: Int) = if a < b then b else a

HM type:

a : Int→ b : Int→ Int

Liquid type template:

a : {ν : Int | κa} → b : {ν : Int | κb} → {ν : Int | κr}



Liquid Type Inference – Hindley-Milner

So Hindley-Milner can give us “normal” types for expressions.

How do we get liquid types out of that?

=⇒ introduce liquid type variable κ for each “base type”

=⇒ liquid type template

Example:

Programme:

max (a :: Int) (b :: Int) = if a < b then b else a

HM type:

a : Int→ b : Int→ Int

Liquid type template:

a : {ν : Int | κa} → b : {ν : Int | κb} → {ν : Int | κr}



Liquid Type Inference – Hindley-Milner

So Hindley-Milner can give us “normal” types for expressions.

How do we get liquid types out of that?

=⇒ introduce liquid type variable κ for each “base type”

=⇒ liquid type template

Example:

Programme:

max (a :: Int) (b :: Int) = if a < b then b else a

HM type:

a : Int→ b : Int→ Int

Liquid type template:

a : {ν : Int | κa} → b : {ν : Int | κb} → {ν : Int | κr}



Liquid Type Inference – Constraint generation

Next: what constraints are there on the κ?

First, an example.



Liquid Type Inference – Constraint generation

Example:

Programme:

max (a :: Int) (b :: Int) = if a < b then b else a

Liquid type template:

a : {ν : Int | κa} → b : {ν : Int | κb} → {ν : Int | κr}

Intuitively:

We know that a :: κa and b :: κb. Let’s call these facts Γ.

if a < b, we return b, therefore Γ ∧ a < b must imply κr

if b ≤ a, we return a, therefore Γ ∧ b ≤ a must imply κr

these are (morally) our two constraints



Liquid Type Inference – Constraint generation

Example:

Programme:

max (a :: Int) (b :: Int) = if a < b then b else a

Liquid type template:

a : {ν : Int | κa} → b : {ν : Int | κb} → {ν : Int | κr}

Intuitively:

We know that a :: κa and b :: κb. Let’s call these facts Γ.

if a < b, we return b, therefore Γ ∧ a < b must imply κr

if b ≤ a, we return a, therefore Γ ∧ b ≤ a must imply κr

these are (morally) our two constraints



Liquid Type Inference – Constraint generation

Example:

Programme:

max (a :: Int) (b :: Int) = if a < b then b else a

Liquid type template:

a : {ν : Int | κa} → b : {ν : Int | κb} → {ν : Int | κr}

Intuitively:

We know that a :: κa and b :: κb. Let’s call these facts Γ.

if a < b, we return b, therefore Γ ∧ a < b must imply κr

if b ≤ a, we return a, therefore Γ ∧ b ≤ a must imply κr

these are (morally) our two constraints



Liquid Type Inference – Constraint generation

Example:

Programme:

max (a :: Int) (b :: Int) = if a < b then b else a

Liquid type template:

a : {ν : Int | κa} → b : {ν : Int | κb} → {ν : Int | κr}

Intuitively:

We know that a :: κa and b :: κb. Let’s call these facts Γ.

if a < b, we return b, therefore Γ ∧ a < b must imply κr

if b ≤ a, we return a, therefore Γ ∧ b ≤ a must imply κr

these are (morally) our two constraints



Liquid Type Inference – Constraint generation

Example:

Programme:

max (a :: Int) (b :: Int) = if a < b then b else a

Liquid type template:

a : {ν : Int | κa} → b : {ν : Int | κb} → {ν : Int | κr}

Intuitively:

We know that a :: κa and b :: κb. Let’s call these facts Γ.

if a < b, we return b, therefore Γ ∧ a < b must imply κr

if b ≤ a, we return a, therefore Γ ∧ b ≤ a must imply κr

these are (morally) our two constraints



Liquid Type Inference – Constraint generation

How is this done formally?

Constraints are inferred with a system of syntax-directed rules:

Γ `Q v : Bool Γ; c `Q e1 : σ̂ Γ;¬c `Q e2 : σ̂
LT-IF

Γ `Q if c then e1 else e2 : σ̂

Γ `Q e : σ1 Γ ` σ1 <: σ2
LT-SUB

Γ `Q e : σ2

Γ � ϕ1 ⇒ ϕ2
<:-BASE

Γ ` {ν : t | ϕ1} <: {ν : t | ϕ2}



Liquid Type Inference – Constraint generation

How is this done formally?

Constraints are inferred with a system of syntax-directed rules:

Γ `Q v : Bool Γ; c `Q e1 : σ̂ Γ;¬c `Q e2 : σ̂
LT-IF

Γ `Q if c then e1 else e2 : σ̂

Γ `Q e : σ1 Γ ` σ1 <: σ2
LT-SUB

Γ `Q e : σ2

Γ � ϕ1 ⇒ ϕ2
<:-BASE

Γ ` {ν : t | ϕ1} <: {ν : t | ϕ2}



Liquid Type Inference – Constraint generation

How is this done formally?

Constraints are inferred with a system of syntax-directed rules:

Γ `Q v : Bool Γ; c `Q e1 : σ̂ Γ;¬c `Q e2 : σ̂
LT-IF

Γ `Q if c then e1 else e2 : σ̂

Γ `Q e : σ1 Γ ` σ1 <: σ2
LT-SUB

Γ `Q e : σ2

Γ � ϕ1 ⇒ ϕ2
<:-BASE

Γ ` {ν : t | ϕ1} <: {ν : t | ϕ2}



Liquid Type Inference – Constraint generation

Context: Γ = [a : {ν : Int | κa}; b : {ν : Int | κb}]

Apply LT-IF rule:

Γ `Q a < b : Bool Γ; a < b `Q b : κr Γ; b ≤ a `Q a : κr

Γ `Q if a < b then b else a : κr

Apply subtyping rules LT-SUB and <:-BASE to prove the last two obligations:

Γ; a < b `Q b : {ν : Int | ν = b}
Γ; a < b � ν = b⇒ κr

Γ; a < b ` {ν : Int | ν = b} <: {ν : Int | κr}
Γ; a < b `Q b : {ν : Int | κr}

Γ; b ≤ a `Q a : {ν : Int | ν = a}
Γ; b ≤ a � ν = a⇒ κr

Γ; b ≤ a ` {ν : Int | ν = a} <: {ν : Int | κr}
Γ; b ≤ a `Q a : {ν : Int | κr}



Liquid Type Inference – Constraint generation

Context: Γ = [a : {ν : Int | κa}; b : {ν : Int | κb}]

Apply LT-IF rule:

Γ `Q a < b : Bool Γ; a < b `Q b : κr Γ; b ≤ a `Q a : κr

Γ `Q if a < b then b else a : κr

Apply subtyping rules LT-SUB and <:-BASE to prove the last two obligations:

Γ; a < b `Q b : {ν : Int | ν = b}
Γ; a < b � ν = b⇒ κr

Γ; a < b ` {ν : Int | ν = b} <: {ν : Int | κr}
Γ; a < b `Q b : {ν : Int | κr}

Γ; b ≤ a `Q a : {ν : Int | ν = a}
Γ; b ≤ a � ν = a⇒ κr

Γ; b ≤ a ` {ν : Int | ν = a} <: {ν : Int | κr}
Γ; b ≤ a `Q a : {ν : Int | κr}



Liquid Type Inference – Constraint generation

Context: Γ = [a : {ν : Int | κa}; b : {ν : Int | κb}]

Apply LT-IF rule:

Γ `Q a < b : Bool Γ; a < b `Q b : κr Γ; b ≤ a `Q a : κr

Γ `Q if a < b then b else a : κr

Apply subtyping rules LT-SUB and <:-BASE to prove the last two obligations:

Γ; a < b `Q b : {ν : Int | ν = b}
Γ; a < b � ν = b⇒ κr

Γ; a < b ` {ν : Int | ν = b} <: {ν : Int | κr}
Γ; a < b `Q b : {ν : Int | κr}

Γ; b ≤ a `Q a : {ν : Int | ν = a}
Γ; b ≤ a � ν = a⇒ κr

Γ; b ≤ a ` {ν : Int | ν = a} <: {ν : Int | κr}
Γ; b ≤ a `Q a : {ν : Int | κr}



Liquid Type Inference – Constraint generation

So we have the constraints:

[a : κa; b : κb; a < b] ` {ν : Int | ν = b} <: {ν : Int | κr}
[a : κa; b : κb; b ≤ a] ` {ν : Int | ν = a} <: {ν : Int | κr}

What do they mean? Think of the κ as predicates. Then:

κa(a) ∧ κb(b) ∧ a < b∧ ν = b =⇒ κr(ν)

κa(a) ∧ κb(b) ∧ b ≤ a∧ ν = a =⇒ κr(ν)

What are the strongest κ that satisfies these?



Liquid Type Inference – Constraint generation

So we have the constraints:

[a : κa; b : κb; a < b] ` {ν : Int | ν = b} <: {ν : Int | κr}
[a : κa; b : κb; b ≤ a] ` {ν : Int | ν = a} <: {ν : Int | κr}

What do they mean? Think of the κ as predicates. Then:

κa(a) ∧ κb(b) ∧ a < b∧ ν = b =⇒ κr(ν)

κa(a) ∧ κb(b) ∧ b ≤ a∧ ν = a =⇒ κr(ν)

What are the strongest κ that satisfies these?



Liquid Type Inference – Constraint solving

We have: a system of constraints on the κ

We want: the strongest solution of the κ

Idea:

each κ is a conjunction of finitely many qualifiers like

0 ≤ ν, ν ≤ x, . . .

thus only finitely many assignments for the κ exist

the theorem prover can tell us if an assignment is OK

we can brute force all of them and pick the strongest one that

is OK



Liquid Type Inference – Constraint solving

We have: a system of constraints on the κ

We want: the strongest solution of the κ

Idea:

each κ is a conjunction of finitely many qualifiers like

0 ≤ ν, ν ≤ x, . . .

thus only finitely many assignments for the κ exist

the theorem prover can tell us if an assignment is OK

we can brute force all of them and pick the strongest one that

is OK



Liquid Type Inference – Constraint solving

We have: a system of constraints on the κ

We want: the strongest solution of the κ

Idea:

each κ is a conjunction of finitely many qualifiers like

0 ≤ ν, ν ≤ x, . . .

thus only finitely many assignments for the κ exist

the theorem prover can tell us if an assignment is OK

we can brute force all of them and pick the strongest one that

is OK



Liquid Type Inference – Constraint solving

We have: a system of constraints on the κ

We want: the strongest solution of the κ

Idea:

each κ is a conjunction of finitely many qualifiers like

0 ≤ ν, ν ≤ x, . . .

thus only finitely many assignments for the κ exist

the theorem prover can tell us if an assignment is OK

we can brute force all of them and pick the strongest one that

is OK



Liquid Type Inference – Constraint solving

We have: a system of constraints on the κ

We want: the strongest solution of the κ

Idea:

each κ is a conjunction of finitely many qualifiers like

0 ≤ ν, ν ≤ x, . . .

thus only finitely many assignments for the κ exist

the theorem prover can tell us if an assignment is OK

we can brute force all of them and pick the strongest one that

is OK



Liquid Type Inference – Constraint solving

Example:

Same function as before:

Liquid type variables: κa, κb, κr

Set κa, κb to True (we want to be able to call max with any values)

Constraints:

a < b∧ ν = b =⇒ κr(ν)

b ≤ a∧ ν = a =⇒ κr(ν)

We try the assignment: κr 7→ a ≤ ν ∧ b ≤ ν ∧ 0 ≤ ν

Theorem prover says: No, because e.g. a = −2, b = −1 violates 0 ≤ ν

We try the assignment: κr 7→ a ≤ ν ∧ b ≤ ν

Theorem prover says: Yes!



Liquid Type Inference – Constraint solving

Example:

Same function as before:

Liquid type variables: κa, κb, κr

Set κa, κb to True (we want to be able to call max with any values)

Constraints:

a < b∧ ν = b =⇒ κr(ν)

b ≤ a∧ ν = a =⇒ κr(ν)

We try the assignment: κr 7→ a ≤ ν ∧ b ≤ ν ∧ 0 ≤ ν

Theorem prover says: No, because e.g. a = −2, b = −1 violates 0 ≤ ν

We try the assignment: κr 7→ a ≤ ν ∧ b ≤ ν

Theorem prover says: Yes!



Liquid Type Inference – Constraint solving

Example:

Same function as before:

Liquid type variables: κa, κb, κr

Set κa, κb to True (we want to be able to call max with any values)

Constraints:

a < b∧ ν = b =⇒ κr(ν)

b ≤ a∧ ν = a =⇒ κr(ν)

We try the assignment: κr 7→ a ≤ ν ∧ b ≤ ν ∧ 0 ≤ ν

Theorem prover says: No, because e.g. a = −2, b = −1 violates 0 ≤ ν

We try the assignment: κr 7→ a ≤ ν ∧ b ≤ ν

Theorem prover says: Yes!



Liquid Type Inference – Constraint solving

Idea:

qualifiers are independent from one another:

A⇒ B∧ C iff A⇒ B and A⇒ C

so we can look at all the qualifiers separately

Optimised algorithm: iterative weakening

start with strongest possible assignment (all qualifiers)

while there are unsatisfied constraints: weaken the κ involved

as much as necessary

in the end, we get the strongest valid liquid type (or an error)



Liquid Type Inference – Constraint solving

Idea:

qualifiers are independent from one another:

A⇒ B∧ C iff A⇒ B and A⇒ C

so we can look at all the qualifiers separately

Optimised algorithm: iterative weakening

start with strongest possible assignment (all qualifiers)

while there are unsatisfied constraints: weaken the κ involved

as much as necessary

in the end, we get the strongest valid liquid type (or an error)



In practice

Typechecking takes very long

Implementations exist in multiple languages, mostly

functional languages

But there are approaches for imperative languages as well

Original implementation of liquid types found a bug in

OCaml bit vector library

Liquid Haskell: http://goto.ucsd.edu/˜rjhala/liquid/

http://goto.ucsd.edu/~rjhala/liquid/


In practice

Typechecking takes very long

Implementations exist in multiple languages, mostly

functional languages

But there are approaches for imperative languages as well

Original implementation of liquid types found a bug in

OCaml bit vector library

Liquid Haskell: http://goto.ucsd.edu/˜rjhala/liquid/

http://goto.ucsd.edu/~rjhala/liquid/


In practice

Typechecking takes very long

Implementations exist in multiple languages, mostly

functional languages

But there are approaches for imperative languages as well

Original implementation of liquid types found a bug in

OCaml bit vector library

Liquid Haskell: http://goto.ucsd.edu/˜rjhala/liquid/

http://goto.ucsd.edu/~rjhala/liquid/


In practice

Typechecking takes very long

Implementations exist in multiple languages, mostly

functional languages

But there are approaches for imperative languages as well

Original implementation of liquid types found a bug in

OCaml bit vector library

Liquid Haskell: http://goto.ucsd.edu/˜rjhala/liquid/

http://goto.ucsd.edu/~rjhala/liquid/


In practice

Typechecking takes very long

Implementations exist in multiple languages, mostly

functional languages

But there are approaches for imperative languages as well

Original implementation of liquid types found a bug in

OCaml bit vector library

Liquid Haskell: http://goto.ucsd.edu/˜rjhala/liquid/

http://goto.ucsd.edu/~rjhala/liquid/

	Prelude – Type Systems
	Liquid Types
	Definition
	Inference
	In practice


