
Software Verification Techniques
based on Floyd’s Method

Thomas Parsch
parsch@in.tum.de

Abstract—This report is about software verification and gives
a brief introduction with examples to Floyd’s method, lazy ab-
straction and the abstraction with the help of Craig interpolation.

I. I NTRODUCTION

One of the most important foundations of software veri-
fication is Floyd’s method [3] from 1967. Its induction like
approach and the association of program statements with
logical arguments are described in section II. Two years later
Floyd’s ideas were picked up by Hoare in order to postulate
his Hoare logic[6].

Although it was possible to verify little programs, the
computation effort needed for larger code samples exceeded
the capabilities by far. The amount of predicates to keep track
of was too large. In the years afterwards new techniques were
developed in order to reduce it. One of two solutions, which
are presented in this paper, is called lazy abstraction [4].
This method allows to maintain a preciser model than before,
because predicates, which should be tracked of, are discovered
in an automatic way instead of tracking everything.

If a predicate is put on the list for a branch of the
verification tree, it is not removed until a leaf is reached, even if
it is not needed anymore. The second technique [5] makes use
of Craig interpolation in order to have always a parsimonious
set of predicates being checked.

In the following the Floyd’s method, lazy abstraction
and abstraction with the help of Craig interpolation will be
explained, based on the mentioned papers.

II. FLOYD ’ S METHOD

In order to proof correctness, equivalence and termination
each statement of a program is associated with a verification
condition Vc(P,Q). The verification condition holds for a
statementS if the propositionsP , also called antecedent and
Q, often called consequent, hold.P is evaluated directly before
the statement is executed andQ after the statement. If there is
branching (e.g. if statements) and joining in the program ,P
could consist of several entrance propositions{P1, P2, P3, ...}
and Q of several exit propositions{Q1, Q2, Q3, ...}. The
selected entrance and the chosen exit propositions have to hold.

1 / / i n t i i s s e t t o 5
2 i n t x =0;
3 whi le (i >0){
4 x ++;
5 i−−;
6 }
7 re turn x ;

Listing 1. Simple example program

Start

X ← 0

I > 0

X = X + 1

Yes

I = I − 1

Halt
No

I ≧ 0

I ≧ 0 ∧ X = 0

I ≧ 0 ∧ X ≧ 0

I > 0 ∧ X ≧ 0

I > 0 ∧ X > 0

I ≧ 0 ∧ X > 0 I = 0 ∧ X ≧ 0

Fig. 1. Floyd’s method control chart example

{P}S{Q} is also called Hoare triple. [6] The consequent
of a statement should be the antecedent of the next statement,
this has similarities to an induction, where the next proof step
is based on the step before. It is possible to visualize a program
as a flowchart, where the vertexes represent the statements and
the edges are attached with a tag, which include the antecedent
respectively consequent. An example for the code in listing1
is given in figure 1.

In the example it is assumed that the variableint i is
already set to a value greater than0. So the first tag isI ≧ 0.
In the statement0 is assigned tox. So we know that the
variableX, which representsint x is equal to0. Since at the
moment the proposition of the loop is not known yet, the next
statementI > 0 is taken directly into account. Because of
the if -statement there are two possible exits. IfI > 0 then
I > 0 ∧ X = 0 has to hold, otherwiseI = 0 ∧ X = 0.
In the latter case the program would terminate. Following the
other branch, after the statementX = X + 1 the proposition
is I > 0 ∧ X > 0. And so before the loop goes back in the
chart I = I − 1 is executed andI ≧ 0 ∧X > 0 has to hold.

SinceI ≧ 0 ∧ X > 0 and I = 0 ∧ X = 0 does not exclude
each other it is possible to combine it toI ≧ 0 ∧ X ≧ 0. If
you follow the statements further the propositions as seen on
the figure 1 are received.

The combination and more conversions are allowed be-
cause [3] postulates following axiomes.

Axiom 1:
If Vc(P;Q) andVc(P’;Q’), thenVc(P∧ P’;Q ∧Q’)

If more than one proposition holds for an antecedent or
consequent, this axiom allows to combine them.

Axiom 2:
If Vc(P;Q) andVc(P’;Q’), thenVc(P∨ P’;Q ∨Q’)

This allows the combination of the results of a case
analysis. This is for example useful, when several ranges of
initial values are checked for certain variables.

Axiom 3:
If Vc(P;Q), thenVc((∃x)(P); (∃x)(Q))

This axiom is very fundamental and allows the sequential
combination of antecedents and consequents.

Axiom 4:
If Vc(P;Q) andR ⊢ P, Q ⊢ S, thenVc(R;S)

Corollary:
If Vc(P;Q) and⊢ (P≡ R), ⊢ (Q ≡ S), thenVc(R;S)

”Axiom 4 asserts that ifP and Q are verifiable as an-
tecedent and consequent for a command, then so are any
stronger antecedent and weaker consequent.” [3]

The axioms can be also deduced from the properties of
completeness and consistency.

Applying this method to a programming language a se-
mantic definition is needed. First a syntactic definition must be
defined, to check the syntactically correctness and to identify
the basic structure of the language. In addition for every
possible statement, a rule, how to construct the verification
condition, has to be made. The semantic definition must be
consistent and should be complete. Once this is done, a
program can be verified.

It is not always possible to proof the termination of a
program, since the halting problem is unsolvable in general.
Though for programs for which aW -function could be defined,
it is possible. AW -function calculates from the free variables
of a proposition and the program counter a value, which
belongs to a well-ordered set. If the value gets smaller, with
every step executed, compared to the one before, the program
terminates.

III. L AZY ABSTRACTION

In order not to keep track of all predicates as described
in chapter II, the lazy abstraction[4] technique works after the
abstract-check-refine paradigm [1].

Abstraction
The abstraction step uses a finite set of predicates to createan
abstract model of the program.

Verification
The following verification step checks the abstraction. If no
counter example is found the program is correct. Otherwise
an abstract counterexample is returned.

Counterexample-driven refinement
If an abstract counterexample is found, there are two possibil-
ities. Either it is possible to relate it to a counterexamplein
the program. So the verification stops with the result that the
program is incorrect. Or it is a spurious counterexample, which
means that the abstraction is too coarse. Then the abstraction
model has to be refined by adding more predicates to the
finite set. If this is done the cycle is repeated, starting with
the abstraction step.

1 Example () {
2 i f (∗) {
3 do {
4 g o t l o c k = 0 ;
5 i f (∗) {
6 lock () ;
7 g o t l o c k ++;
8 }
9 } whi le (∗)

10 }
11 do {
12 lock () ;
13 o ld = new ;
14 i f (∗) {
15 un lock () ;
16 new++;
17 }
18 } whi le (new != o ld) ;
19 un lock () ;
20 re turn () ;
21 }

Listing 2. Lazy abstraction: Code
example from [4]

22 lock (){
23 i f (LOCK == 0) {
24 LOCK = 1 ;
25 } e l s e {
26 ERROR
27 }
28 }

Listing 3. Lazy abstraction: lock()
function from [4]

30 un lock () {
31 i f (LOCK == 1){
32 LOCK = 0 ;
33 } e l s e {
34 ERROR
35 }
36 }

Listing 4. Lazy abstraction:
unlock() function from [4]

To realize the cycle mentioned above, a control flow
automaton (CFA) is created from the code. The different
program states are connected by edges. These are labeled with
either a block of instructions, executed to reach the next state,
or an assumption about predicates (e.g. if conditionals). The
CFA for listing 1 can be seen in figure 2. The∗ represents
further statements, which are not modeled in this example. So
all emanating branches could be taken and the corresponding
predicate assumed astrue. The examples of this section are
taken from [4].

In order to run through the three highlighted phases, lazy
abstraction performs a forward search for the verification and
a backwards counterexample analysis. The following describes
this two steps accompanied by an example.

Forward search
Based on the CFA a search tree is created. First a depth-
first search is performed in order to compute the reachable
regions. The predicates to consider are stored in a set. The
set could be empty in the beginning or filled with some
predefined predicates. An assumption about a predicate which
is not in the current set is assumed to be true. Instructions
including unknown predicates are simply ignored. With this
method a reachable region for every node in the search tree
is created, until an error state is reached or the search tree
covers all possible states. If a loop in the CFA is followed
and the examined state is a state, which was visited before,

1

2

3

4

5

6 ret

7

8

9

10

11

12

[T]

[T]

[T]

[T]

got lock=0

[T]

[T]

[T]

[get lock=0]

lock()
old=new

unlock()
new++

2

[new=old]

unlock()

[T]

[new != old]
[got lock!=0]

Fig. 2. Lazy abstraction: Control Flow Automaton (CFA) from [4]

two different cases must be taken into consideration. If no
new states are added to the union of the reachable regions, the
search goes back to the next branch. Otherwise the branch of
the search tree is followed further.

In the example figure 3 it is assumed that the set already in-
cludes the predicateLOCK = 0 andLOCK = 1. In addition
in the beginningLOCK = 0 holds. The predicates without
curly brackets are from the forward search. The remaining
from the following backwards counterexample analysis. The
forward search is started from the root node1. From node
1 to 2 nothing changes, since the step is not modeled and
nothing is executed. But in the next step the formula describing
the reachable region, changes.old = new is not taken into
account, since it is not in the set of tracked predicates. The
other statementlock() in contrast changes the predicate of
the reachable region toLOCK = 1. This is a simplification,
since thelock() function could be also represented with several
nodes in the CFA. From node3 to 4 nothing happens, since it
is not modeled. In the following step, the reachable region
is described withLOCK = 0, because of theunlock()
function. new + + is not taken into account. The step from
node 5 to 6 do not change anything, sincenew = old is
not included in the set of predicates. Finally an error stateis
reached, becauseLOCK = 0. Beside theERROR statement
nothing is executed, the reachable region could be described
by LOCK = 0.

Backwards counterexample analysis
If an error state, as in the example above, is discovered, it must
be checked if it is a real error or a spurious counterexample.
Is the latter the case, new predicates have to be added to the
set in order do refine the abstraction. Therefore a backtrack
analysis from the error node towards the root is executed. It

starts on the error node and computes for every predecessor of
the node the bad region with respect to the labels of the bad
path. If the intersection of the bad region and the reachable
region from the forward search is empty this node is called
pivot node. This should be the case since the error should not
be reachable from the root node. But if no pivot node is found
the counterexample belongs to a real error. Otherwise the set
of predicates considered is expanded from the pivot node on
with the predicates derived from the bad region and the forward
search starts again. The advantage of this approach that notall
predicates have to be tracked and in addition different subtrees
could use different sets of predicates. By keeping subtrees
computation time could be saved.

As alread mentioned and the name reveals, backwards
counterexample analysis starts from the error and goes back-
wards to the root. Thereby an formula describing the bad
region is constructed. The first bad region to be deduced is
the one of node number6. The weakest precondition to reach
from this node the error node isLOCK = 0. Since only
if LOCK = 0 an error occurs whenunlock() is called. In
order to get from node5 to 6 new = old is assumed, so
LOCK = 0 & new = old is the related bad region. In the
following step from4 to 5 unlock() andnew++ is executed.
Whereatnew + + can be seen asnew = new + 1. So the
weakest precondition isLOCK = 1 & new + 1 = old. Still
the intersection between the bad region and reachable region is
not empty. From node3 to 4 nothing happens, so we can carry
over the bad region. In order to get from node2 to 3 lock() and
old = new have to be executed. So in the corresponding bad
region LOCK = 0, because there must be no Lock, when
executing lock() without an error andnew + 1 = new if
new + 1 = old should be true after executingold = new.
Since the bad region itself is empty, becausenew+ 1 = new

1

2

3

4

5

6

Error

[T]

[T]

LOCK = 0

LOCK = 0

LOCK = 1

LOCK = 1

LOCK = 0

LOCK = 0

LOCK = 0

{LOCK = 0 & NEW + 1 = NEW}

{LOCK = 1 & NEW + 1 = OLD}

{LOCK = 1 & NEW + 1 = OLD}

{LOCK = 0 & NEW = OLD}

{LOCK = 0}

lock()
old=new

unlock()
new++

[new=old]

unlock()

Fig. 3. Lazy abstraction: Forward search and backward counterexample analysis similar to [4]

has no solution, the intersection between the reachable region
and the bad region is empty. Consequently the node must be
the pivot node. As node2 is inside the CFA, the counter-
example is a spurious one andnew = old can be added to the
set of tracked predicates from the pivot node on.

Now a new forward search starting from the root node can
be done as seen in fig 4. This time a return statement in the left
branches of the search tree is reached, because the error states
are not reached anymore, because the relevant predicates are
taken into account. Node2 in the lower left is assumed as leaf,
since the states reached withLOCK = 0 & !new = old are
completely included in the ones reachable withLOCK = 0.
Two other branches are not followed, because the assumption
does not hold. This is marked by a crossed line.

Still a new spurious counter-example would be found in
the right side of the tree and the predicategot lock = 0 has
to be added for the pivot node number7. Due to that fact for
the whole treeLOCK = 0 & LOCK = 1 has to be taken
into account andnew = old starting from pivot node2 and
got lock = 0 beginning from pivot node7. This can be seen
in figure 5.

IV. A BSTRACTION WITH CRAIG INTERPOLATION

The following concept is found in [5]. Relationships which
are only specified between current values of variables and
those, which are required for proving correctness are called
parsimonious. To be able to calculate always a parsimonious
set of predicates the Craig interpolation [2] is used. A Craig
interpolationψ = Craig(ϕ−, ϕ+) of two formulasϕ−, ϕ+

fulfills the following properties:

• ϕ− impliesψ

• ϕ− ∧ ψ is unsatisfiable

• ψ only contains symbols fromϕ− andϕ+

Like the lazy abstraction approach, abstraction with Craig
interpolation is also counterexample driven. But unlike above

1

72

new=old got lock=0

LOCK=0 & LOCK=1

Fig. 5. Different abstractions similar to [4]

a predicate is only tracked, when it is really needed and not
all the way downwards from the pivot node on. Therefore
- starting from an error trace - for every node the Craig
interpolation is calculated. In listing 6 we seen an error trace,
for the same case as in figure 3.

assume (lock = 0)
l ock = 1
o ld = new
assume (lock = 1)
l ock = 0
new = new +1
assume (new = o ld)
assume (lock = 0)
E r r o r

Listing 5. Error trace

From this the constraints are derived. As values change
during the program, it is important to introduce the subindices,
so that a value of a variable in the beginning of the program
does not lead to inconsistency, although it already changedits

1

2

3

4

5 5

2

6 2

6

RET

LOCK=0

LOCK=0

LOCK=1 & new = old

LOCK=1 & new = old

LOCK=0 & !new = old

LOCK=0 & !new = old

False False
LOCK=0 & new = old

LOCK=1 & new = old

LOCK=1 & new = old

[T]

[T]

unlock()

[new = old][new != old]

...

Fig. 4. Search with new predicate similar to [4]

values. The derived constraints from the error trace in listing
5 can be seen in listing 6.

L0 = 0

L1 = 1

old0 = new0

L1 = 1 d i s c a r d
L2 = 0

new1 = new0 + 1

new1 = old0

L2 = 0 d i s c a r d

Listing 6. Constraints

Some formulas can be discarded once, because they are
redundant. For every node (beside the error node) a Craig
interpolation has to be calculated. Thereforeϕ−

1 is the con-
catenation of formulas from root to (including) the one related
to the actual node.ϕ+

1 is the concatenation of the remaining
formulas. From a proof of unsatisfiability ofϕ−

1 ∧ ϕ
+

1 the
interpolation could be derived. Therefore only constraints have
to be taken into account, where an included symbol appears
on both sides. In the following the interpolantψ is calculated
for every node of the example.

Here the trick is used that instead ofϕ−

n
it is possible to

takeψn−1 ∧ constrnew. Whereasconstrnew is the constraint
that switched fromϕ+ to ϕ−.

ϕ−

1 : L0

ϕ+

1 : L1 ∧ old0 = new0 ∧ L2 = 0
∧ new1 = new0 + 1 ∧ new1 = old0
ψ1: true

ϕ−

2 : true ∧ L1 = 1
ϕ+

2 : old0 = new0∧L2 = 0∧new1 = new0+1∧new1 = old0

ψ1: true

ϕ−

3 : true ∧ old0 = new0

ϕ+

3 : L2 = 0 ∧ new1 = new0 + 1 ∧ new1 = old0
ψ3: old0 = new0

ϕ−

3 : true ∧ old0 = new0

ϕ+

3 : L2 = 0 ∧ new1 = new0 + 1 ∧ new1 = old0
ψ3: old0 = new0

ϕ−

4 : old0 = new0 ∧ L2 = 0
ϕ+

4 : new1 = new0 + 1 ∧ new1 = old0
ψ4: old0 = new0

ϕ−

5 : old0 = new0 ∧ new1 = new0 + 1
ϕ+

5 : new1 = old0
ψ5: old0 = new1 − 1

ϕ−

6 : old0 = new1 − 1 ∧ new1 = old0
ϕ−

6 : ∅

The corresponing predicate, which should be kept track of,
could be simply found, by removing the subindices from the
formula. So e.g. forψ4: old0 = new0 it is old = new. This
technique improves the perfomance of the verification process
clearly.

REFERENCES

[1] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement.Computer Aided Verification, pages 154–
169, 2000.

[2] W. Craig. Linear reasoning.Journal of Symbolic Logic, 22:250–268,
1957.

[3] R. Floyd. Assigning meanings to programs.Proc. Symp. on Applied
Mathematics, 19:19–32, 1967.

[4] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
POPL, 2002.

[5] T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstraction
from proofs. POPL, 2004.

[6] C. Hoare. An axiomatic basis for computer programming.Communica-
tions of the ACM, 1969.

