~NoO b~ WNE

Software Verification Techniques
based on Floyd’'s Method

Thomas Parsch
parsch@in.tum.de

Abstract—This report is about software verification and gives Start
a brief introduction with examples to Floyd’s method, lazy ab-
straction and the abstraction with the help of Craig interpolaton. |- ===--— =20
X <+0
I. INTRODUCTION e IZ0AX=0
One of the most important foundations of software veri-
fication is Floyd's method [3] from 1967. Its induction like >
approach and the association of program statements with
bp brog S IZ0AXZ0

logical arguments are described in section Il. Two year lat
Floyd's ideas were picked up by Hoare in order to postulate No
his Hoare logic[6]. |

Although it was possible to verify little programs, the
computation effort needed for larger code samples exceeded
the capabilities by far. The amount of predicates to keegktra
of was too large. In the years afterwards new techniques were
developed in order to reduce it. One of two solutions, which
are presented in this paper, is called lazy abstraction [4]. - I>0AX>0
This method allows to maintain a preciser model than before, B
because predicates, which should be tracked of, are disbve X=X+1
in an automatic way instead of tracking everything.

IZ0AN X>0- I=0ANX2Z20

))) ---I>0N X>0
If a predicate is put on the list for a branch of the
verification tree, it is not removed until a leaf is reachecbreif
it is not needed anymore. The second technique [5] makes use
of Craig interpolation in order to have always a parsimosiou
set of predicates being checked. Fig. 1.

Floyd’'s method control chart example

In the following the Floyd's method, lazy abstraction
and abstraction with the help of Craig interpolation will be

explained, based on the mentioned papers. {P}S{Q} is also called Hoare triple. [6] The consequent
of a statement should be the antecedent of the next statement
[I. FLOYD'S METHOD this has similarities to an induction, where the next prdeps

In order to proof correctness, equivalence and terminatio%ssb;%isvggne;ﬁpr:ﬁf]zr\%:{;gsfg'pbrfsfn\t”tshueagaet:mml %s a
each statement of a program is associated with a verificatio he edges are attached with a tag, which include the antetede

condition V.(P, Q). The verification condition holds for a . A
statementS ‘is‘ thg)propositionsP also called antecedent and _respecﬂyely_ consequent. An example for the code in lisling
! is given in figure 1.

@, often called consequent, holB.is evaluated directly before
the statement is executed afdafter the statement. If there is
branching (e.g. if statements) and joining in the prograi ,
could consist of several entrance propositi§#s, Py, Ps, ...}
and @ of several exit propositiondQ1,Q2,Qs,...}. The
selected entrance and the chosen exit propositions hawddo h

In the example it is assumed that the variabié i is
already set to a value greater thanSo the first tag igd = 0.
In the statemenb is assigned tar. So we know that the
variable X, which representit x is equal to0. Since at the
moment the proposition of the loop is not known yet, the next

/I int i is set to 5 statement/ > 0 is taken directly into account. Because of
\',&‘;”:(i:g?o){ the if -statement there are two possible exitsZIf> 0 then
X4+ I > 0AX = 0 has to hold, otherwisd = 0 A X = 0.
i——: In the latter case the program would terminate. Followirg th
} other branch, after the statemelit= X + 1 the proposition
return x; isI>0AX > 0. And so before the loop goes back in the

Listing 1. Simple example program chart/ =1 —1 is executed and = 0 A X > 0 has to hold.

Sincel Z0AX >0andl =0A X = 0 does not exclude Verification

each other it is possible to combine it fo= 0 A X = 0. If The following verification step checks the abstraction. df n
you follow the statements further the propositions as seen ocounter example is found the program is correct. Otherwise
the figure 1 are received. an abstract counterexample is returned.

The combination and more conversions are allowed be- Counterexample-driven refinement
cause [3] postulates following axiomes. If an abstract counterexample is found, there are two pibssib
) ities. Either it is possible to relate it to a counterexamiple
Axiom 1: o , , the program. So the verification stops with the result that th
If Ve(P;Q) and V.(P;Q"), thenV.(P AP QA Q) program is incorrect. Or it is a spurious counterexampléchvh
If more than one proposition holds for an antecedent ofm€ans that the abstraction is too coarse. Then the abetracti

consequent, this axiom allows to combine them. model has to be refined by adding more predicates to the
_ finite set. If this is done the cycle is repeated, startinghwit
Axiom 2: the abstraction step.

If Vo(P;Q) and V,(P’;Q"), thenV.(PV P;Q Vv Q")

. o 1 E |
This allows the combination of the results of a case X{afnzzﬁ{(){
analysis. This is for example useful, when several rangessof do { 22 lock (){
initial values are checked for certain variables. 4 got lock = 0; 23 it (LOCK == 0) {
5 it (%) { 24 LOCK = 1;
Axiom 3: 6 lock () ; 32 J EIIQSR%R{
If Vo(P;Q), then V. ((32)(P); (32)(Q)) ; gotlockrs: 27)
This axiom is very fundamental and allows the sequenll%al } while (x) 87} -
combination of antecedents and consequents. T Listing 3 'froﬁz[i]abs”acuon' lock(
. . 12 lock () ;
Axiom 4. 13 old = new; 30 unlock () {
15 unlock () ; = 0:;
Corollary: 16 new++; §§ } ;OISE{ o
If ‘/C(P, Q) andF (P = R), '7 (Q = S), then‘/C(R7S) 17 } 34 ERROR
)] - 18 } while (new != old); 35 }
"Axiom 4 asserts that ifP? and Q are verifiable as ani9 unlock(); 36 }
tecedent and consequent for a command, then so are2Gnyreturn () ; Listing 4. Lazy abstraction:
stronger antecedent and weaker consequent.” [3] 21} unlock() function from [4]

Listing 2. Lazy abstraction: Code
The axioms can be also deduced from the properties ofxample from [4]

completeness and consistency.))
To realize the cycle mentioned above, a control flow

Applying this method to a programming language a seautomaton (CFA) is created from the code. The different
mantic definition is needed. First a syntactic definition theés program states are connected by edges. These are labefed wit
defined, to check the syntactically correctness and to ifent eijther a block of instructions, executed to reach the netest
the basic structure of the language. In addition for everyor an assumption about predicates (e.g. if conditionalbe T
possible statement, a rule, how to construct the verifinatio CFA for listing 1 can be seen in figure 2. Therepresents
condition, has to be made. The semantic definition must beyrther statements, which are not modeled in this examge. S
consistent and should be complete. Once this is done, &l emanating branches could be taken and the corresponding
program can be verified. predicate assumed @sue. The examples of this section are

It is not always possible to proof the termination of ataken from [4].

program, since the halting problem is unsolvable in general |n order to run through the three highlighted phases, lazy
Though for programs for which & -function could be defined, apstraction performs a forward search for the verificatiod a

it is possible. AW -function calculates from the free variables 3 packwards counterexample analysis. The following dessri

of a proposition and the program counter a value, whichhis two steps accompanied by an example.

belongs to a well-ordered set. If the value gets smallet wit

every step executed, compared to the one before, the program Forward search _)
terminates. Based on the CFA a search tree is created. First a depth-

first search is performed in order to compute the reachable
regions. The predicates to consider are stored in a set. The
. LAZY ABSTRACTION set could be empty in the beginning or filed with some

In order not to keep track of all predicates as describec?redeﬁned predicates. An assumption about a predicatehwhic

in chapter II, the lazy abstraction[4] technique works mfte 1S not in the current set is assumed to be true. Instructions
abstract-chéck-refine paradigm [1]. including unknown predicates are simply ignored. With this

method a reachable region for every node in the search tree
Abstraction is created, until an error state is reached or the search tree

The abstraction step uses a finite set of predicates to caeate covers all possible states. If a loop in the CFA is followed

abstract model of the program. and the examined state is a state, which was visited before,

[T] [T]

lock() 2 7
old=new O(\m O
3
(7] g
[T] (7]
[T]
[new != old]
unlock() @\ 0 [got_lock!=0]
new++ 5
[T]
[new=old] [get lock=0]

unlock()

Fig. 2. Lazy abstraction: Control Flow Automaton (CFA) frod [

two different cases must be taken into consideration. If nctarts on the error node and computes for every predecesor o
new states are added to the union of the reachable regians, tthe node the bad region with respect to the labels of the bad
search goes back to the next branch. Otherwise the branch path. If the intersection of the bad region and the reachable
the search tree is followed further. region from the forward search is empty this node is called
] o . pivot node. This should be the case since the error should not
In the example figure 3 itis assumed that the set already inye reachable from the root node. But if no pivot node is found
cludes the predicattOCK = 0 and LOCK = 1. In addition the counterexample belongs to a real error. Otherwise the se
in the beginningLOCK = 0 holds. The predicates without of predicates considered is expanded from the pivot node on
curly brackets are from the forward search. The remainingyith the predicates derived from the bad region and the fadwa
from the following backwards counterexample analysis. Thesearch starts again. The advantage of this approach thatinot
forward search is started from the root notleFrom node predicates have to be tracked and in addition differentreabt

1 to 2 nothing changes, since the step is not modeled angdoy|d use different sets of predicates. By keeping subtrees
nothing is executed. But in the next step the formula des@ib computation time could be saved.

the reachable region, changegd = new is not taken into ;
account, since it is not in the set of tracked predicates. The As alread mentioned and the name reveals, backwards

other statementock() in contrast changes the predicate of counterexample analysis starts from the error and goes- back
the reachable region thOCK = 1. This is a simplification, Wards to the root. Thereby an formula describing the bad
since thelock() function could be also represented with several’®gion is constructed. The first bad region to be deduced is
nodes in the CFA. From nodgto 4 nothing happens, since it the one of node number The weakest precondition to reach
is not modeled. In the following step, the reachable regiorffom this node the error node IEOCK = 0. Since only

is described WithLOCK = 0, because of theunlock() if LOCK = 0 an error occurs whemnlock() is called. In
function. new + + is not taken into account. The step from order to get from node5 to 6 new = old is assumed, so
node 5 to 6 do not Change anything' sinceew = old is LOCK = 0 & new = old is the related bad r_eg|0n. In the
not included in the set of predicates. Finally an error siate following step from4 to 5 unlock() andnew + + is executed.
reached, becauseOCK = 0. Beside theE RROR statement Whereatnew + + can be seen asew = new + 1. So the
nothing is executed, the reachable region could be destcribeveakest precondition iSOCK =1 & new + 1 = old. Still

by LOCK = 0. the intersection between the bad region and reachablenrénio
not empty. From nod8 to 4 nothing happens, so we can carry
Backwards counterexample analysis over the bad region. In order to get from nat® 3 lock() and

If an error state, as in the example above, is discoveredyst m old = new have to be executed. So in the corresponding bad
be checked if it is a real error or a spurious counterexampleregion LOCK = 0, because there must be no Lock, when
Is the latter the case, new predicates have to be added to te&ecutinglock() without an error anthew + 1 = new if
set in order do refine the abstraction. Therefore a backtrackew + 1 = old should be true after executingd = new.
analysis from the error node towards the root is executed. IBince the bad region itself is empty, because + 1 = new

[T]/CD LOCK =0

lock() LOCK =0 {LOCK =0& NEW + 1= NEW}
old=new
[T]/GD LOCK =1 {LOCK =18& NEW +1=0LD}
uniock() LOCK =1 {LOCK =1& NEW + 1= OLD)
new++
new=old] LOCK =0 {LOCK =0& NEW = OLD}

lock
@ LOCK =0 {LOCK =0}
LOCK =0

Fig. 3. Lazy abstraction: Forward search and backward evexample analysis similar to [4]

has no solution, the intersection between the reachabierreg LOCK=0 & LOCK=1
and the bad region is empty. Consequently the node must be
the pivot node. As node is inside the CFA, the counter-
example is a spurious one andw = old can be added to the
set of tracked predicates from the pivot node on.
Now a new forward search starting from the root node can @ @

be done as seen in fig 4. This time a return statement in the left

branches of the search tree is reached, because the etes sta

are not reached anymore, because the relevant predicates ar

taken into account. Nodgin the lower left is assumed as leaf,

since the states reached willOCK = 0 & !new = old are

completely included in the ones reachable Wit C K = 0.

Two other branches are not followed, because the assumption new=old got lock=0
does not hold. This is marked by a crossed line.

Still a new spurious counter-example would be found in
the right side of the tree and the predicgig_lock = 0 has Fig. 5. Different abstractions similar to [4]
to be added for the pivot node numberDue to that fact for
the whole treeLOCK = 0 & LOCK = 1 has to be taken
into account anchew = old starting from pivot node2 and @& predicate is only tracked, when it.is really needed and not
got_lock = 0 beginning from pivot nodd. This can be seen all the way downwards from the pivot node on. Therefore

in figure 5. - starting from an error trace - for every node the Craig
interpolation is calculated. In listing 6 we seen an erracdy,
IV. ABSTRACTION WITH CRAIG INTERPOLATION for the same case as in figure 3.

The following concept is found in [5]. Relationships which assume(lock = 0)
are only specified between current values of variables anbOCk_= 1
those, which are required for proving correctness are d:alleglsdsu;n:e‘(”lock
parsimonious. To be able to calculate always a parsimonioug,ck = o
set of predicates the Craig interpolation [2] is used. A @rai new = new +1
interpolationty) = Craig(p—,¢*) of two formulase—, ™ assume (new = old)
fulfills the following properties: Esr?g’r“e (lock =0)
e ¢ impliesy Listing 5. Error trace

e p~ A1 is unsatisfiable

1)

From this the constraints are derived. As values change
during the program, it is important to introduce the subiedi

Like the lazy abstraction approach, abstraction with Craigso that a value of a variable in the beginning of the program
interpolation is also counterexample driven. But unlikexab does not lead to inconsistency, although it already chaitged

e 7 only contains symbols fromp~ and o™

[T] LOCK=0

LOCK=0 @

LOCK=1 & new = o|d/<3>
LOCK=1 & new = old

@ [T]

LOCK=0 & 'new = old 5 5) LOCK=1 & new = old
[new != old] [new = old]

LOCK=0 & Inew = old @ LOCK=1 & new = old
unlock()
@ @ @ LOCK=0 & new = old

False False

Fig. 4. Search with new predicate similar to [4]

values. The derived constraints from the error trace intist ;: true
5 can be seen in listing 6.

Lo=0 o - true A oldg = newy

Llld:1 @31 Ly = 0 A newy; = newy + 1 A new; = oldy
oldy = newg . _

L, =1 discard P3: oldg = newo

Lo=0

qu“w“i - Zledigo +1 5 - true A oldy = newy

L, =0 discard @3 . Ly = 0 A new; = newg + 1 A new; = oldy

> oldy = new
Listing 6. Constraints Vs 0 0

Some formulas can be discarded once, because they afd - oldg = newo A Ly =0
redundant. For every node (beside the error node) a Crai§4_5 newy = newg + 1 A newy = oldy
interpolation has to be calculated. Therefgsg is the con- 4> oldg = newo
catenation of formulas from root to (including) the one teth
to the actual node<p{r is the conce_xte_na;i.on of the remaining @5 & oldy = newy A new; = newg + 1
formulas. From a proof of unsatisfiability af; A ¢ the @ new; = oldy
interpolation could be derived. Therefore only constalmve). oldy = new;, — 1
to be taken into account, where an included symbol appears
on both sides. In the following the interpolantis calculated _
for every node of the example. P6 - ‘;do = new; — 1 Anew; = oldo

Pg -

Here the trick is used that instead @f it is possible to ‘

take v, _1 A constrnew. Whereasconstr,,q,, is the constraint

that switched froms* to . The corresponing predicate, which should be kept track of,

could be simply found, by removing the subindices from the
w7 Lo formula. So e.g. for)y: oldy = newy it is old = new. This

<p‘}; Ly A oldy = newg A Ly =0 technique improves the perfomance of the verification B®sce
Anewi = newy + 1 A newy = oldy clearly.
1 true

REFERENCES

: guided abstraction refinemer@omputer Aided Verificatigrpages 154—

_ [1] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Coustample-
@?F' true ALy =1
5 oldyg = newg ALy = 0 Anew; = newy+1Anew; = oldy 169, 2000.

[2] W. Craig. Linear reasoningJournal of Symbolic Logijc22:250-268,
1957.

[3] R. Floyd. Assigning meanings to program&roc. Symp. on Applied
Mathematics 19:19-32, 1967.

[4] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazyrabson.
POPL, 2002.

[5] T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Afagtion
from proofs. POPL, 2004.

[6] C. Hoare. An axiomatic basis for computer programmi@@mmunica-
tions of the ACM 1969.

