
Why Type Checking and Type Inference
Main reasons for introducing type checking or type inferencing in programming
languages was to ensure safety and readability of programs.

First look at easier one, readability. Consider reading and maintaining of a
simple program written in C and in python. One can easily distinguish that
reading C code is faster and relatively easier than python. Reason, presence of
predefined data types in C. The reader/programmer has a rough idea of what
sort of values it should expect for a particular identifier (because of the presence
of data types).

Second reason is safety of the program. Programs in any programming lan-
gauge are made up of a series of statements. But all statements of the program
doesnot makes sense. e.g. i = 5 + "Navketan" or "Banana" * "Orange". We
need to agree that some statements doest not makes sense or they are bad.
As a programmer one needs some help from compiler to determine legality of
program statements. For the compiler to make such a judgement , some set of
rules is required through which it can determine whether statements are good
or bad. Hindley-Milner(HM) type inferencing provides just that. It provides a
set rules for inferencing type (and value) of a particular expression by the com-
piler (or interpreter). If its able to find a unique type for the current program
statement(or expression) it marks the statement as correct. If the statement
doesn’t follow its set of rules or compiler is not able to find a unique type for
a particular statement then it flags an error. In the following sections we are
going to present the basic language construct(Since the full ML language is too
complex) and the set of rules that HM system offers and give examples of how
HM type system actually works.

Syntax of Hindley-Milner type system
Expressions of the language are elements of term algebra generated using gram-
mar below :

a ::= cst constant
| x identifier
| op(a) primitive application
| f where f (x) = a recursive function
| a1(a2) application
| let x = a1 in a2 the let binding
| (a1,a2) pair construction

x and f range over infinite set of identifiers. cst are constants which can be
Integers, boolean, character strings etc. op ranges over operators like arithmetic
operator, comparasions or projection. conditional constructs like if...then...else
are also treated as operators. The expression f where f(x) = a defines function

1

whose parameter is x and result a. f is the internal name of the function. Inside
a, f is considered bound to the function being defined. The let construct defines
a local scope and at the same time permits us to give simple recursive definition.

Example: Here is an example program for factorial calculation.

fun fact n = let fun f 0 = 1 | f n = n * f (n - 1) in if (n < 0) then raise
Fail "negative argument" else f n end;

Semantics of Hindley-Milner type system
The evaluation argument e ` a ⇒ r should be read as “in the evaluation envi-
ronment e, the expression a evaluates to the result r”.
Semantic Objects:

Results: r ::= v normal result (a value)
| err error result

Value: v ::= cst base value
| (v1,v1) value pair
| (f,x,a,e) functional value(closure)

Environments: e ::= [x1 7→ v1,x2 7→ v2,....,xn 7→ vn]
In environment expressions e, we assume the identifiers x1....xn to be distinct.
Term e = [x1 7→ v1,x2 7→ v2,....,xn 7→ vn] is interpreted as impartial mapping
with finite domain from identifiers to values i.e. mapping between x1 and v1 ∀ i
= 1 to n. The empty mapping is written as []. We also define extension of the
environment e by v in x, written as e + x 7→ v by :
[x1 7→ v1,....,xn 7→ vn] + x 7→ v = [x1 7→ v1,....,xn 7→ vn,x 7→ v]

if x /∈ { x1,x2,.....xn }
[x1 7→ v1,....,xn 7→ vn] + x 7→ v = [x1 7→ v1,....xi−1 7→ vi−1,xi 7→ vi,xi+1 7→

vi+1,...,xn 7→ vn] if x = xi
In other words,
Dom(e + x 7→ v) = Dom(e)

⋃
{x}

(e + x 7→ v)(x) = x
(e + x 7→ v)(y) = e(y) ∀y ∈ Dom(e), y 6= x

Evaluation rule
Evaluation rules are set up so that we are able to define the judgement e ` a
⇒ r . Defined as set of axioms and inference rules. Axiom P allows to conclude
that preposition P holds if and only if P1,P2..Pn all other axioms evaluate to
true . Here ’e’ always means the current environment. And it’s denoted as :

P1 P2Pn

P

2

The Standard rules of evaluation are :

e ` a ⇒ r

x ∈ Dom(e)

e ` a ⇒ r

x /∈ Dom(e)

e ` a ⇒ err

These rules states that a constant evaluates to itself, identifier evaluates to
the corresponding value bound to it in the environment and if the identifier is
not present in the environment then it raises an error.

e ` (f where f(x) = a) ⇒ (f,x,a,e)

A function evaluates to a closure: an object that combines the unevaluated
body of a function (f,x,a) with environment e at the time of function definition.

e1 ` a1 ⇒ v1 e2 ` a2 ⇒ v2
e ` (a1, a2)⇒ (v1, v2)

e1 ` a1 ⇒ err

e ` (a1, a2)⇒ err

e2 ` a2 ⇒ err

e ` (a1, a2)⇒ err

Pairs normally evaluate to another pair. If one of them is not available in
the environment or causes an error, then error is raised. That way evaluation
becomes somewhat sequential (left-to-right).

e1 ` a1 ⇒ v1 e + x 7→ v1 ` a2 ⇒ r2
e ` let x = a1 in a2 ⇒ r2

e1 ` a1 ⇒ err

e ` let x = a1 in a2 ⇒ err

let binding evaluates its 1st argument and associates the obtained value to
the bounded identifier, enriches the environment and then evaluates the second
argument in the enriched environment, which will be result of the whole let
expression. As in the earlier case, when one argument determination raises an
error,its an error overall.

e1 ` a1 ⇒ (f , x , a0, e0) e ` a2 ⇒ v2 e0 + f 7→ (f , x , a0 , e0) + x 7→ v2 ` a0 ⇒ r0
e ` a1(a2) ⇒ r2

Expression a1 should evaluate to the closure (f,x,a0,e0) . a2 evaluate to v2.
We then evaluate the function body a0 from the closure in the environment e0
and also enriching e0 by two more bindings , argument x and function name f.

e1 ` a1 ⇒ r1 r1 does not match (f , x , a0, e0)

e ` a1(a2) ⇒ err

e2 ` a2 ⇒ err

e ` a1(a2) ⇒ err

Two possible error cases are listed here. Clearly if a1 is evaluated to anything
other than a function closure, will be erroneous scenario. Second case if the
evaluation of argument a2 runs into error.

e ` a1 ⇒ true e ` a2 ⇒ r2
e ` if a1 then a2 else a3 ⇒ r2

e ` a1 ⇒ false e ` a3 ⇒ r3
e ` if a1 then a2 else a3 ⇒ r3

e ` a ⇒ r1 r1 /∈ Bool
e ` if a1 then a2 else a3 ⇒ err

This if-then-else rule is slightly different from the rest in the sense that 1st

3

argument a1 always evaluate to bool value (if condition).

Typing
Typing rules associate types (type expressions) to expressions, just like evalu-
ation results to expressions. The main feature of Damas-Milner type inference
system is polymorphism, i.e. same expression can evaluate to multiple types.
We define a simple type system as follows :-

ι ∈ TypBas = {int; bool;} base types
α, β, γ ∈ TypVar type variables

Set of type expressions :-

τ := ι base type
| α type variable
| τ1 → τ2 type variable
| τ1 × τ2 type variable

Free Variables :- Set of variables without quantification (w.r.t certain for-
mula).We write F(τ) for the set of type variables that are free in the type τ .
This set is defined by:

F(τ) := φ
F(α) := {α}
F(τ1 → τ2) := F (τ1)

⋃
F (τ2)

F(τ1 × τ2) := F (τ1)
⋃
F (τ2)

Substitution :- Substitutions are finite mappings from type variables to type
expressions. A substitution instance of a propositional formula is a second
formula obtained by replacing symbols of the original formula by other formu-
las.They are written φ, ϕ.
A substitution ϕ naturally extends to an homomorphism of type expressions,
written ϕ , and defined by:

ϕ(τ) := ι
ϕ(α) := ϕ(α) if α ∈ Dom(ϕ)
ϕ(α) := α if α /∈ Dom(ϕ)
ϕ(τ1 → τ2) := ϕ(τ1)→ ϕ(τ2)
ϕ(τ1 × τ2) := ϕ(τ1)× ϕ(τ2)

Type Schemes : Type schemes are basically set of types which can be ob-
tained by substituting types for variables in a consistent manner. Denoted
usually by letter σ and given by the following grammar :-

4

σ ::= ∀α1α2....αn.τ type scheme

Quantified variables are treated as set of distinct variables. Their ordering is
insignificant. We distinguish between type schemes only by renaming a bounded
variable or by introduction or suppression of quantified variables.

∀α1α2....αn.τ = ∀β1β2....βn.[α1 7→ β1,αn 7→ βn]τ
∀αα1α2....αn.τ = ∀∀α1α2....αn.τ if α /∈ F (τ)

Free Variables in the type scheme is given as :-
F (∀α1α2....αn) = F (τ) \ {α1, α2, ...αn}

Substitutions to the type scheme is given as :-
ϕ(∀α1α2....αn.τ) = ∀α1α2....αn.ϕ(τ)

Type Scheme Example : scheme(α → β) → list(α) defines the following
infinite set :

(Int→Int)→list(Int)
(Bool→Int)→list(Bool)
(Bool→Bool)→list(Bool)
(Int→Bool)→list(Int)
((Int→Bool)→Int)→list((Int→Bool))

Only precondition being all occurrences of any type variable should be replaced
all together with the same type.

Typing environments :A typing environment, ’E’, is a finite mapping be-
tween from identifiers to type Schemes. We can think of ’E’ as a symbol table
providing a mapping from identifiers to types and table gets updated with each
new declaration.

E ::= [x1 7→ v1, x2 7→ v2...xn 7→ vn]

The image of an environment E by a substitution is defined as :-
ϕ([x1 7→ v1, x2 7→ v2...xn 7→ vn]) = [x1 7→ ϕ(v1), x2 7→ ϕ(v2)...xn 7→ ϕ(vn)]

Typing Rules: Typing rules for the language are very similar to the eval-
uation rules for the expressions. The typing rule E ` e : t is read as “in typing
environment E expression e has type t”.E |> p : E1 is read as “in type environ-
ment E, typing program p results in type environment E1 ”.The environment
E associates a type to each identifier that appear in the expression e.
Type inferencing rules : below we are writing the set of rules which we use
for type inferencing.

E(b) = t

E ` b : t

b ∈ {true, false}
E ` b : bool

E ` b : t
E ` (b) : t

E ` o : t1→ t2 E ` b : t1
E ` o b : t2

E ` o : t1→ t2→ t E ` b1: t1 E ` b2: t2
E ` b1 o b2 : t

5

E ` b1: bool E ` b2: t E ` b3: t
E ` if b1 then b2 else b3: t

E ` b1: t2→ t1 E ` b2: t1
E ` b1 b2 : t1

E |> p : E1 E1 ` e : t
E ` let p in e end : t

E ` e : t E + [b := t] ` e : t
E |> val b = e : E + [b := t]

E + [f := t1→ t2] + [b := t] ` e : t2
E |> fun f b = e : E + [f := t1→ t2]

Corrected Example on type evaluation on map (ref
slide :)
Lets look at the example on map :
fun succ(y) = y+1;
val succ = fn : int → int
map succ([1,2,3]);
val it = [2, 3, 4] : int list

The function map takes two input parameters. As we see, the second argu-
ment of map function is a list and its first argument is a function which acts
on list items. Here we are using the in-built map function, but we need body
of the function and based on the body we can actually compute the type of the
function. So i am writing a sample implementation of map function.

fun map f [] = [] | map f (h::t) = (f h)::(map f t);

Now looking at the function body, first part takes an empty list and returns
an empty list (this doesn’t give us any information). In the second part of the
definition (after |) gives us enough information for the generation of constraints.

1) Type of function map is map : T1 ∗ T2 → T3 where T1, T2 and T3 are
some type variables,that most generic definition of a function that takes two
arguments and returns one. Also since the function f takes it argument from
the second argument of the map function so map : T1 → T2 → T3 where T1

2) Let’s take a generic type definition for function f (1st argument of the map
function). It can noted from the above definition that it takes one argument
and returns one as well. so f : T4 → T5. Since the first argument of the map
function is this function f, therefore f : T4 → T5 = f : T1, which is possible if
and only if T4 → T5 = T1
3) Let h has some type T6 denoted as h : T6.
4) Let t has some type T7 denoted as t : T7. t has the type of list of type h
[going by the pattern h::t]. T7 = list(T6).
5) Going by the pattern of the function body, function f takes h as it’s argu-

6

ment [(f h)::(map f t)] . This is possible if and only if T4 = T6.
6) Going by point 3 and 4, T7 = list(T6) = list(T4).
7) Going by the pattern of the function body, function map returns a list of

(f h) type of elements. from point 2, (fh) : T5. T3 = list(T5).
8) Putting it all together,

map : T1 ∗ T2 → T3 = map : (T4 → T5)→ list(T4)→ list(T5).
9) Now replace values of T4 and T5 on all places in the type definition of map,
we get map : (’a→’b)→ ’a list → ’b list.

E ` 1: Int E ` +: Int→ Int→ Int E ` y : Int E ` y + 1: Int

E ` [1, 2, 3] : list(Int) E + ′alist = list(Int) ` ′a : Int [Comment :-
Since input is a list of Int so from point 9 we can conclude that input to the
function f(succ in our case is type Int)]

E + [f : (fun succ(y) = y + 1): Int→ Int] ` e : Int [Comment :- Since input
to the function f(succ) is Int, we are computing that return type of f(succ) : ’b
= Int]

E ` ′b : Int E ` ′blist : list(Int) [Commment :- return type of map is
’b list = list(Int)]

E + [f : (fun succ(y) = y + 1): Int→ Int] + [map : (Int→ Int)→ list(Int)→ list(Int)] ` list(Int)
E ` map succ([1, 2, 3]) : list(Int)

Conclusion :
Well basically we have seen that type inferencing and expression evaluation
revolves around a fixed set of rules. This is something that makes Hindley-
Milner(HM) type inferencing algorithm relatively faster. HM system not only
offers type inferencing system but it inherently does type checking for us as
well(ref error example on the slides). One of the most important aspects of HM
type system is parametric polymorphism (depicted by above example on map).
HM algorithm picks the most general type from the available type scheme for a
particular type variable.

References :
1. Phd Thesis - Xavior Leroy - http : //pauillac.inria.fr/ xleroy/bibrefs/Leroy−
these.html

2. Poly Morphic Type Inference - http : //cs.au.dk/ mis/typeinf.pdf

3. http : //en.wikipedia.org/wiki/Typeinference - For Definition

7

