
Hindley-Milner Type Inference

Outline of the Presentation :-

➔ Brief Historical Perspective of Type Theory
➔ Why do we need type inference
➔ Hindley-Milner Type system – what it offers

Hindley-Milner Type Inference

Historical Perspective :-
➔ Gottlob Frege - Begriffsschrift, a formal language, modeled

upon arithmetic, for pure thought (1878).
➔ David Hilbert (1900)
➔ Prove consistency of arithmetic
➔ Axiomatize all of mathematics and prove its consistency.

Citation :- http://www.youtube.com/watch?v=h0OkptwfX4g and wikipedia

http://www.youtube.com/watch?v=h0OkptwfX4g

Hindley-Milner Type Inference

Historical Perspective :- continued...
➔ Bertard Russel (1908) - Russel's paradox
➔ “The set of all sets that do not contain themselves as members” - also barber

problem.
➔ Introduced his version of Mathematical Logic based on type theory.
➔ Introduced hierarchy of Types
➔ “No totality can contain members defined in terms of itself”.

Citation :- http://www.youtube.com/watch?v=h0OkptwfX4g and wikipedia

http://www.youtube.com/watch?v=h0OkptwfX4g

Hindley-Milner Type Inference

Historical Perspective :- continued..
➔ Kurt Gödel (1931)
➔ Any sufficiently powerful system cannot be both consistent and complete.
➔ Arithmetic cannot prove its own consistency.
➔ Death knell for Hilbert's program.
➔ Type theory began as a failed program – couldn't prove consistency of arithmetic.

Citation :- http://www.youtube.com/watch?v=h0OkptwfX4g and wikipedia

http://www.youtube.com/watch?v=h0OkptwfX4g

Hindley-Milner Type Inference

Why do we need Type Inference :-

➔Readability – Difference in reading a C – Program and Python
program. Important for maintenance of code.

➔Safety – Not all expressions in untyped languages makes
sense. e.g. “square root of banana” or “Navketan” + 5 .

➔Let us agree on the existence of bad expressions.

➔Any non-trivial choice of badness leads to an uncomputable
subset, which compiler cannot distinguish good from bad.

l

l

Citation :- http://cs.au.dk/~mis/typeinf.pdf

Hindley-Milner Type Inference

l Lets look at an example for the above :-
l def foo(s: String) = s.length and
l def bar(x, y) = foo(x) + y
l By looking at the definition of foo and bar we can easily put its type like (String)=>Int and

(String,Int)=>Int.
l How ? Well foo expects a string as input parameter, therefore x parameter must be a string in

bar as well (x passed to foo).
l Since foo returns length of the input string (integer), the parameter y must be of type integer

(quite easy).
l Now lets modify this example a bit like, def bar(x,y) = foo(x) + “Navketan” .
l Compiler is going to flag this as error, since there is no overload version of '+' which combines

an integer with string. As humans we can very easily determine this aspect, but for the machine
(read compiler this job is not easy). We need to have some predefined rules which compiler can
use and decide the legality of the program.

l Hindley-Milner or later Damas-Milner Type Inference algorithm does exactly this for us. It
provides a certain rules which we can use to determine type and value of any legal expression .
If program doesn't fit into any set of rules, its termed as illegal (error).

l

Citation :- http://www.codecommit.com/blog/scala/what-is-hindley-milner-and-why-is-it-cool

Hindley-Milner Type Inference

l Why do we need further research in Type Inference :-

l To ensure safety of programs , we introduce a type system and some what as a compromise we
have to sacrifice some good expressions. e.g.

l val x = 1;
l val x = 1 : int
l x + 2.3;
l Error-Can't unify int with real (Different type constructors) Found near +(x, 2.3). Static errors

(pass2). What we need to do is minimize this slack area.

l

Citation :- http://cs.au.dk/~mis/typeinf.pdf

Hindley-Milner Type Inference

Hindley-Milner Syntax :- Expressions of the language are elements of term algebra
generated using grammar below.

Cst – constants , can be Integer,boolean,strings etc.
Identifiers usually have an infinite set. Domain of 'x' and 'f' .
'op' range over set of operators usually arithmetic, comparisons operator or if-then-
else.
The let-construct defines a local scope and at the same time permits us to give a
simple recursive definition.

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner System :- Now we should write semantics to give meaning to the syntax
above defined.
The evaluation argument e |- a => r should be read as “in the evaluation environment
e, the expression a evaluates to the result r”
Semantic Objects:

Hindley-Milner Type Inference

In environment expressions e, we assume the identifiers X
1
....X

n
 to be distinct. Term

e = [X
1
 |→ V

1
,X

2
 |→ V

2
,......X

n
 |→ V

n
] is interpreted as impartial mapping with finite

domain from identifiers to values i.e. mapping between X
i
 and V

i
 for all i = 1 to n. The

empty mapping is written as []. We also define extension of the environment e by V in
X, written as e + x |→ v by

In other words,

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference
Hindley-Milner System evaluation rules for values :- As an example look at the
piece of code below.

➔ val x = 1;
➔ val x = 1 : int
➔ x + 3;
➔ val it = 4 : int

➔ x + d;
➔ Error-Value or constructor (d) has not been declared Found near +(x, d)
➔ Static errors (pass2)

 [x := 1] |= x : 1 [x := 1] |= d : err (undeclared)

[x := 1] |= x + d : err

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

Hindley-Milner System evaluation rules for values :- Evaluation rules are defined as set of axioms and
inference rules. Axiom P allows to conclude that preposition P holds if and only if P1,P2..Pn all other axioms
evaluate to true . Here 'e' always means the current environment.

Standard rules for evaluation of values are as follows :-

I) The left most rule says “Constant evaluates to itself”
II) The mid one evaluates an identifier = value bound to it in the environment.
III) The right most case of error arises in case of identifier doesn't belong to the domain of e

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

Hindley-Milner System evaluation rules for values :- Another example .

val a = 2;
val a = 2 : int
fun f x = x + a;
val f = fn : int -> int
f 3;
val it = 5 : int
f (x+3);
val it = 6 : int

Hindley-Milner Type Inference

Hindley-Milner System evaluation rules for values :- Another example .

f (x+d);
Error-Value or constructor (d) has not been declared Found near f(+(x, d))
Static errors (pass2)

[x:=1, a:=2, f:= (fun f x = x+a, [a:=2])] |= f : (fun f x = x+a, [a:=2])
[x:=1, a:=2] |= d : err
[x:=1, a:=2, f:= (fun f x = x+a, [a:=2])] |= x+d : err
[a:=2] + [f : (fun f x = x+a, [a:=2])] + [x:=x+d] |= x+a : err

[x:=1, a:=2, f:= (fun f x = x+a, [a:=2])] |= f (x+d) : err

Hindley-Milner Type Inference

l Standard rules for evaluation of values are as follows :-

A function evaluates to a closure : an object that combines the unevaluated
body of a function (f,x,a) with environment e at the time of function
definition.

Pairs normally evaluate to another pair. If one of them is not available in the
environment or causes an error, then error is raised. That way evaluation
becomes somewhat sequential (left-to-right).

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

l Standard rules for evaluation of values are as follows :-

let binding evaluates its 1st argument and associates the obtained value to the
bounded identifier, enriches the environment and then evaluates the second
argument in the enriched environment, which will be result of the whole let
expression. As in the earlier case, when one argument determination raises an error,
its an error overall.

Expression a1 should evaluate to the closure (f,x,a0,e0) . a2 evaluate to v2. We then
evaluate the function body a0 from the closure in the environment e0 and also
enriching e0 by two more bindings , argument x and function name f.

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

l Standard rules for evaluation of values are as follows :-

Two possible error cases are listed here. Clearly if a1 is evaluated to anything other
than a function closure, will be erroneous scenario. Second case if the evaluation of
argument a2 runs into error.

This if-then-else rule is slightly different from the rest in the sense that 1st argument a1
always evaluate to bool value (if condition).

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

l Typing : -Typing rules associate types (type expressions) to expressions, just like evaluation
results to expressions. The main feature of Damas-Milner type inference system is
polymorphism, i.e. same expression can evaluate to multiple types. We define a simple type
system as follows :-

 Type of type expressions :-

 Example of type variable :- Vector in C++.
Std::vector<T> m_demoVector; // here T is a type variable

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

l Free Variables :- Set of variables without quantification (w.r.t certain formula).

 Example of free variable :-

Ay Ez P(x,y,z) , where P is a predicate . Here x is a free variable w.r.t given formula.
Also note that free variable is defined only for type variables and not base types.

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

Substitution :- Substitutions are finite mappings from type variables to type expressions. A
substitution instance of a propositional formula is a second formula obtained by replacing symbols of
the original formula by other formulas. e.g. (R → S) & (T → S) is a substitution of P & Q .

Proposition :-

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html and http://en.wikipedia.org/wiki/Substitution_(logic)

Hindley-Milner Type Inference

Type Schemes :- Type schemes are basically set of types which can be obtained by substituting types
for variables in a consistent manner. Denoted usually by letter and given by the following grammar :-

Quantified variables are treated as set of distinct variables. Their ordering is insignificant. We
distinguish between type schemes only by renaming a bounded variable or by introduction or
suppression of quantified variables.

Free Variables in the type scheme is given as :-

Substitutions to the type scheme is given as :-

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html and http://cs.au.dk/~mis/typeinf.pdf

http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

Type Schemes :- Example

Only precondition being all occurrences of any type variable should be replaced all together with the
same type.

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html and http://cs.au.dk/~mis/typeinf.pdf

http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

Typing environments :- A typing environment, 'E', is a finite mapping between from identifiers to type
Schemes. We can think of 'E' as a symbol table providing a mapping from identifiers to types and table
gets updated with each new declaration.

The image of an environment E by a substitution is defined as :-

Typing Rules :- typing rules for the language are very similar to the evaluation rules for the
expressions. The typing rule ' E |- e : t ' is read as “ in typing environment E expression e has type t”.
The environment E associates a type to each identifier that appear in the expression e.

An identifier x (in typing environment E) in an expression can be given any type that is an instance of
the type scheme associated with the identifier . Type is an instance of type scheme
 and denoted by if and only if = , where is a substitution
function with domain .

Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html and http://cs.au.dk/~mis/typeinf.pdf

http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

Typing environments :- Example
Lets look at the old sample program

val x = 1;
val x = 1 : int
val a = 2;
val a = 2 : int
fun f x = x + a;
val f = fn : int -> int

● E |= x : Int E |= a : Int E |= + : Int → Int → Int E |= x + a : Int
● E + [f : (fun f x = x+a : Int → Int] |= x+a : Int
● ---
● E |= f:= (fun f x = x+a) : Int → Int

http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

Typing Rules :- A function definition has type with its formal parameter x has type and
function body has type . It's internal name 'f' has the same type .

Function application of the form a1(a2) has type correspondence between arguments and function
parameter. Type of function result is the type of whole application node. The rule is given below as

The let construct introduces polymorphic types in the type environment. This is due to the
generalization operator Gen, which builds a type scheme from a type and environment.

The typing environment 'E' is enhanced by the declaration of let construct.
Citation :- http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html and http://cs.au.dk/~mis/typeinf.pdf

Hindley-Milner Type Inference

Typing environments :- Example
Lets look at the another more complicated example

fun succ(y) = y+1;
val succ = fn : int -> int
map succ([1,2,3]);
val it = [2, 3, 4] : int list

● E |= 1 : Int E |= y : Int E |= + : Int → Int → Int
● E |= y + 1 : Int
● E + [f : (fun succ(y) = y+1 : Int → Int] |= e : Int
● E + [map succ([1,2,3]) : list(Int) → list(Int)] |= list(Int)
● ---
● E |= map succ([1,2,3]) : list(Int)

http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-thesis.html

Hindley-Milner Type Inference

Typing Rules :- The typing rules for constant, operator overloading and pair expressions are below.

Hindley-Milner Type Inference

l Conclusion

l Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

