
Motivation
Example

Architecture
Discussion

Extended Static Checking for Java

Lukas Erlacher

TU München - Seminar Verification

14. Juli 2011

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Outline

1 Motivation
Motivation for static checking

2 Example
ESC/Java example

3 Architecture
ESC/JAVA architecture
VC generator
Simplify

4 Discussion
JML + ESC/Java annotation language
JML
What ESC/Java checks

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

Motivation for static checking
Why check a program’s behaviour?

Errors / program does not do what we want
Testing is incomplete and unsound
Testing is expensive

Why static checking?
Does not require executing program
Can cover all code paths

Why ESC/JAVA?
First static checker for Java
Architecture and working principle very clear and structured
Is applicable in practice
Annotation language allows to specify design that can also be
checked

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

Motivation for static checking
Why check a program’s behaviour?

Errors / program does not do what we want
Testing is incomplete and unsound
Testing is expensive

Why static checking?
Does not require executing program
Can cover all code paths

Why ESC/JAVA?
First static checker for Java
Architecture and working principle very clear and structured
Is applicable in practice
Annotation language allows to specify design that can also be
checked

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

Motivation for static checking
Why check a program’s behaviour?

Errors / program does not do what we want
Testing is incomplete and unsound
Testing is expensive

Why static checking?

Does not require executing program
Can cover all code paths

Why ESC/JAVA?
First static checker for Java
Architecture and working principle very clear and structured
Is applicable in practice
Annotation language allows to specify design that can also be
checked

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

Motivation for static checking
Why check a program’s behaviour?

Errors / program does not do what we want
Testing is incomplete and unsound
Testing is expensive

Why static checking?
Does not require executing program
Can cover all code paths

Why ESC/JAVA?
First static checker for Java
Architecture and working principle very clear and structured
Is applicable in practice
Annotation language allows to specify design that can also be
checked

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

Motivation for static checking
Why check a program’s behaviour?

Errors / program does not do what we want
Testing is incomplete and unsound
Testing is expensive

Why static checking?
Does not require executing program
Can cover all code paths

Why ESC/JAVA?

First static checker for Java
Architecture and working principle very clear and structured
Is applicable in practice
Annotation language allows to specify design that can also be
checked

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

Motivation for static checking
Why check a program’s behaviour?

Errors / program does not do what we want
Testing is incomplete and unsound
Testing is expensive

Why static checking?
Does not require executing program
Can cover all code paths

Why ESC/JAVA?
First static checker for Java
Architecture and working principle very clear and structured
Is applicable in practice
Annotation language allows to specify design that can also be
checked

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

What is static checking?

No checking: Program execution breaks on segfault / null
pointer dereference / array bounds violation.
Type checking: Compiler notices illegal code and violation of
specification embedded in type information.
Primitive static checking: Flags easily-detected “suspicious”
code such as use of uninitialized variables or unreachable code.
Formal methods: Formally prove that program is correct.

Extended static checking uses annotations and generic formal
methods to show whether a program behaves within the
constraints of its specification.

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

What is static checking?

No checking: Program execution breaks on segfault / null
pointer dereference / array bounds violation.

Type checking: Compiler notices illegal code and violation of
specification embedded in type information.
Primitive static checking: Flags easily-detected “suspicious”
code such as use of uninitialized variables or unreachable code.
Formal methods: Formally prove that program is correct.

Extended static checking uses annotations and generic formal
methods to show whether a program behaves within the
constraints of its specification.

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

What is static checking?

No checking: Program execution breaks on segfault / null
pointer dereference / array bounds violation.
Type checking: Compiler notices illegal code and violation of
specification embedded in type information.

Primitive static checking: Flags easily-detected “suspicious”
code such as use of uninitialized variables or unreachable code.
Formal methods: Formally prove that program is correct.

Extended static checking uses annotations and generic formal
methods to show whether a program behaves within the
constraints of its specification.

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

What is static checking?

No checking: Program execution breaks on segfault / null
pointer dereference / array bounds violation.
Type checking: Compiler notices illegal code and violation of
specification embedded in type information.
Primitive static checking: Flags easily-detected “suspicious”
code such as use of uninitialized variables or unreachable code.

Formal methods: Formally prove that program is correct.

Extended static checking uses annotations and generic formal
methods to show whether a program behaves within the
constraints of its specification.

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

What is static checking?

No checking: Program execution breaks on segfault / null
pointer dereference / array bounds violation.
Type checking: Compiler notices illegal code and violation of
specification embedded in type information.
Primitive static checking: Flags easily-detected “suspicious”
code such as use of uninitialized variables or unreachable code.
Formal methods: Formally prove that program is correct.

Extended static checking uses annotations and generic formal
methods to show whether a program behaves within the
constraints of its specification.

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

What is static checking?

No checking: Program execution breaks on segfault / null
pointer dereference / array bounds violation.
Type checking: Compiler notices illegal code and violation of
specification embedded in type information.
Primitive static checking: Flags easily-detected “suspicious”
code such as use of uninitialized variables or unreachable code.
Formal methods: Formally prove that program is correct.

Extended static checking uses annotations and generic formal
methods to show whether a program behaves within the
constraints of its specification.

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

Comparison of checking methods

coverage

effort

type
checking

extended
static
checking

program
verification

decidability ceiling

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

Motivation for static checking

ESC/JAVA history

Developed at Compaq Systems Research by Flanagan, Leino,
Lillibridge, Nelson, Saxe, and Stata
Descended from ESC/Modula-3
Developed as practical tool to check programs for semantic
errors, specification violations, and synchronization errors in
concurrent programs
Exploits the space between fast, but primitive syntactic
checkers like lint and comprehensive, but costly formal
program verification

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

ESC/Java example

ESC/Java example

1 public class Bag {
2 int[] elements;
3 int size;
4

5 Bag(int[] input) {
6 size = input.length;
7 elements = new int[size];
8 System.arraycopy(input, 0, elements, 0, size);
9 }

10

11 ..
12 }

Bag.java:6: Warning: Possible null dereference (Null)
size = input.length;

^

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

ESC/Java example

ESC/Java example

1 public class Bag {
2 int[] elements;
3 int size;
4

5 Bag(int[] input) {
6 size = input.length;
7 elements = new int[size];
8 System.arraycopy(input, 0, elements, 0, size);
9 }

10

11 ..
12 }

Bag.java:6: Warning: Possible null dereference (Null)
size = input.length;

^

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

ESC/Java example

ESC/Java example

1 public class Bag {
2 /*@non_null*/ int[] elements;
3 int size;
4

5 Bag(/*@non_null*/ int[] input) {
6 size = input.length;
7 elements = new int[size];
8 System.arraycopy(input, 0, elements, 0, size);
9 }

10

11 ..
12 }

Bag.java:6: Warning: Possible null dereference (Null)
size = input.length;

^

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

ESC/Java example

ESC/Java example

1 public class Bag {
2 /*@non_null*/ int[] elements;
3 int size;
4

5 Bag(/*@non_null*/ int[] input) {
6 size = input.length;
7 elements = new int[size];
8 System.arraycopy(input, 0, elements, 0, size);
9 }

10

11 ..
12 }

Bag.java:6: Warning: Possible null dereference (Null)
size = input.length;

^

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

ESC/Java example

ESC/Java example

/*@invariant size >= 0 && size <= elements.length; */

1 public class Bag {
2 int[] elements; int size;
3 ..
4 int extractMin() {
5 int m = Integer.MAX_VALUE;
6 int mindex = 0;
7 for (int i = 0; i < size; i++) {
8 if (elements[i] < m) {
9 mindex = i;

10 m = elements[i];
11 }
12 }
13 size--;
14 elements[mindex] = elements[size];
15 return m;
16 }
17 }

Bag1.java:8: Warning: Array index possibly too large (IndexTooBig)
if (elements[i] < m) {

^

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

ESC/Java example

ESC/Java example

/*@invariant size >= 0 && size <= elements.length; */

1 public class Bag {
2 int[] elements; int size;
3 ..
4 int extractMin() {
5 int m = Integer.MAX_VALUE;
6 int mindex = 0;
7 for (int i = 0; i < size; i++) {
8 if (elements[i] < m) {
9 mindex = i;

10 m = elements[i];
11 }
12 }
13 size--;
14 elements[mindex] = elements[size];
15 return m;
16 }
17 }

Bag1.java:8: Warning: Array index possibly too large (IndexTooBig)
if (elements[i] < m) {

^
Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

ESC/Java example

ESC/Java example
/*@invariant size >= 0 && size <= elements.length; */

1 public class Bag {
2 int[] elements; int size;
3 ..
4 int extractMin() {
5 int m = Integer.MAX_VALUE;
6 int mindex = 0;
7 for (int i = 0; i < size; i++) {
8 if (elements[i] < m) {
9 mindex = i;

10 m = elements[i];
11 }
12 }
13 size--;
14 elements[mindex] = elements[size];
15 return m;
16 }
17 }

Bag1.java:8: Warning: Array index possibly too large (IndexTooBig)
if (elements[i] < m) {

^

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

ESC/Java example

Recap: Examples

non_null: Forces assigners to always assign a valid instance -
allows users to assume that instance is always valid
invariant: introduces the invariant as precondition and
post-condition to every method call
precondition: forces caller to establish precondition before
calling
postcondition: forces method to establish post-condition
before returning

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

ESC/JAVA architecture
VC generator
Simplify

ESC/JAVA architecture

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

ESC/JAVA architecture
VC generator
Simplify

Guarded Command Language

Originally designed by Dijkstra (1975)
Contains only variable declarations and assignments,
assertions, assumptions, and constructs to handle sequential
composition, branching, and exceptions
Routines are translated into guarded commands that capture
the relevant semantics of the routine. Guarded command
“goes wrong” when it hits an assertion that evaluates to false.
Soundness: A guarded command G translated from a routine
R goes wrong iff R can be invoked from a state satisfying its
stated preconditions and then behaves erroneously by causing
an error or terminating in a state violating its specified
postconditions

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

ESC/JAVA architecture
VC generator
Simplify

VC generator

Verification condition: First-order predicate that holds for
precisely the program states from which execution of a
guarded command does not go wrong.
Weakest liberal precondition (wlp) derived directly from a
routine’s GC
Global information (about Java) and class-scope information
forms “Background predicate” (BP)
BP ⇒ wlp

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

ESC/JAVA architecture
VC generator
Simplify

Simplify

Automatic theorem prover developed for ESC/JAVA
Verifies the BP ⇒ wlp predicate
Limited runtime, caution issued if exceeded
Results used by post-processor to generate warnings
Incomplete (cannot prove all valid formulas), but sound (does
not erroneously prove invalid formulas)

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

JML + ESC/Java annotation language
JML
What ESC/Java checks

ESC/JAVA annotation language

The annotation language is used to specify usage contracts,
encode design properties that are not expressed in the programme
code, and assist ESC/JAVA. Annotations are called “pragmas”:

Basic pragmas: nowarn / assume, assert / unreachable
Routine pragmas: requires, modifies, ensures, exsures,
also_. . .

Invariant pragmas: non_null, invariant, axiom, loop_invariant
Accessibility pragmas: spec_public, readable_if, uninitialized
Ghost variable pragmas: ghost, set
Synchronization pragmas: monitored_by, monitored

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

JML + ESC/Java annotation language
JML
What ESC/Java checks

Specification expressions

Superset of side-effect-free Java expressions, plus syntax to
express lock hierarchy and type expressions
Additional keywords: \old, \modifies, \typeof, \lockset

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

JML + ESC/Java annotation language
JML
What ESC/Java checks

JML

Java Modelling Language, inspired by ESC/JAVA annotation
language
Allows to specify behaviour and contracts of Java programs
and APIs
Used by a big ecosystem of static checkers, testing engines,
documentation tools
Readable and writeable by Java programmers

Erlacher Extended Static Checking for Java



Motivation
Example

Architecture
Discussion

JML + ESC/Java annotation language
JML
What ESC/Java checks

What ESC/JAVA checks

Errors: Runtime type errors (array assignment, cast),
unchecked exceptions, array bounds violations, null
dereference, zero division
Concurrency problems: deadlocks, races
Violated invariants, pre and post-conditions, loop invariants
Violated assertions, non-null pragmas, accessibility pragmas

ESC/JAVA does not check:

Whether a loop invariant holds past the first iteration of a
loop
Arithmetic overflow

Erlacher Extended Static Checking for Java


	Motivation
	Motivation for static checking

	Example
	ESC/Java example

	Architecture
	ESC/JAVA architecture
	VC generator
	Simplify

	Discussion
	JML + ESC/Java annotation language
	JML
	What ESC/Java checks


