
TU Munich

Summary:
Mathematizing C++11 Concurrency

Salomon Sickert (sickert (at) in.tum.de)

April 29, 2013

1 Introduction

Nowadays Multiprocessors became the standard choice for
nearly every computing device, ranging from a smart-phone
up to a super-computer. To accommodate the increasing de-
mand in computing performance several optimisations on the
hardware as well as on the software side are taken, e.g multi-
level caches, out-of-order execution and multi-threading. Un-
fortunately the specification of the widely used language C++
left out concurrent programming and let third-parties, such as
pthreads and OpenMP, provide the necessary tools. This ap-
proach is nowadays considered problematic, as the compiler
may produce inefficient or even incorrect code. For example
an analysis of the pthreads library can be found in [5].
To solve this issue the new C++11 standard introduces sev-

eral concurrency idioms, most notably a threading class and a
memory model clearly specifying, how access to shared variables
is performed. As concurrency especially on relaxed memory
is sometimes counter-intuitive and extremely complex, Batty
et al. formalised parts of the concurrency specification and
proved the correctness of a prototype implementation for atom-
ics on the x86 platform. During their work they also discovered
and fixed some ambiguities and flaws in the concurrency drafts.
From this point onwards the language has built-in concurrency
primitives, similar to Java.

2 Memory Access on Modern x86 Multiprocessors

As already mentioned modern multiprocessors use a variety of
techniques to increase performance, for example write buffers to
enable non-blocking write access to the memory. While these
optimisations are invisible for a single-threaded program, the
effects can be observed in multi-threaded code. For instance
write buffering can have surprising effects. Assume the shared
variables x and y are initialised with 0 and the following in-
structions are executed in parallel on two hardware threads.

Hardware Thread 1 Hardware Thread 2
MOV [x] ← 1 MOV [y] ← 1
MOV r1 ← [y] MOV r2 ← [x]

Write buffering allows the processor to end up in the final
state (T1:r1 = 0) ∧ (T2:r2 = 0). This is called relaxed memory
model, meaning different threads may observe a subtly differ-
ent memory. As many algorithms are designed with a stronger
memory model in mind, which forbids this final state, the pro-
grammer needs to proceed with caution. For example the classic
Dekker’s Mutex Algorithm [3] allows both threads to enter the
critical section at the same time if a relaxed memory model is
used.

Figure 1: x86-TSO block diagram, taken from [8]

In order to restore sequential consistency LOCK’ed instruc-
tions or fencing (memory barriers) can be used. However, flush-
ing caches is costly in terms of cycles and the overall perfor-
mance decreases. Additionally one should keep in mind, that
this problem is not limited to the x86 architecture, as some
non-x86 architectures exhibit even weaker models, e.g ARM.

x86-TSO. Unfortunately Intel and AMD only publish a prose
specification of their processor architectures, which are miss-
ing a precise definition of the memory model according to [8]
and [6]. Hence Sewell et al. created the x86-TSO (Total Store
Order) machine model, which is a “A Rigorous and Usable Pro-
grammers’s Model for x86 Multiprocessors” [8].
The abstract machine - depicted in figure 1 - is composed

of n hardware threads, each of them executing a separate in-
struction stream, and a storage system, which contains a shared
memory, a global lock and for each thread a private write buffer.
For every instruction, such as ADD and INC, there exists a locked
version, such as LOCK ADD and LOCK INC, which limit read op-
erations to the executing H/W thread.
The write buffers are organized as FIFO’s and can propa-

gate buffered writes to the shared memory at any time except
another thread holds the global lock. Furthermore a thread ac-
cessing a memory address reads the most recent value from its
write buffer, if there is one, and otherwise from the shared mem-
ory. By issuing a MFENCE the thread flushes the write buffer.
In order to execute LOCK’d instructions, the thread has to

obtain the global lock, execute the instruction, flush its write
buffer and finally relinquish the lock. While a thread holds the
lock, all other threads are unable to perform read operations.

1

#include <vector>
#include <iostream>
#include <thread>
#include <atomic>

std::atomic<int> cnt = ATOMIC_VAR_INIT(0);

void f()
{

for (int n = 0; n < 1000; ++n) {
/* Do something */
cnt.fetch_add(1, std::memory_order_relaxed);

}
}

int main()
{

std::vector<std::thread> v;
for (int n = 0; n < 10; ++n) {

v.emplace_back(f);
}
for (auto& t : v) {

t.join();
}
std::cout << "Final counter value is " << cnt;

}

Listing 1: Atomics and Threads, based on [1]

3 C++11 Concurrency

To address the mentioned issues the C++11 language ex-
tension introduces several concurrency idioms to the standard
library, such as atomics, mutexes and threads. The atomic type
[2] is the most interesting of these new additions, as one can
specify the memory order, which should be used for this partic-
ular atomic memory operation. The short example in listing 1
illustrates the use of these new types. Two prominent memory
orders are the relaxed and the sequentially consistent ordering.

Relaxed Ordering. This ordering does not provide any synchro-
nisation, the only guarantees are the atomicity of the operation
and that the modification order is respected. This is the weak-
est available ordering. In the context of the x86-TSO model
a relaxed load and store can be implemented1 using MOV. (See
also [4])

Sequentially-Consistent Ordering. All threads using this order-
ing are synchronized and see the same order of memory accesses.
Furthermore no write operation of a thread using a write op-
eration to the atomic, can be reordered after the write. Ac-
cordingly no read operation of another thread can be reordered
before the atomic read. For the x86-TSO model one can im-
plement a sequentially consistent load with MFENCE, MOV and a
store with MOV, MFENCE.

4 C++11 Memory Model

In the context of this summary only a small part of the C++
memory model, introduced in [4], will be presented. The cen-
tral questions is: Given a program p, what are all possible
executions? As different threads can observe a subtly different
memory, “the semantic cannot be expressed in terms of changes
1Provided the type fits into a single register.

to a monolithic memory” [4]. Hence the model is expressed in
terms of memory actions and relations. In the first step a set
of all candidate executions, called pre-executions, is computed.
A candidate execution consists of Xopsem and Xwitness, which
will be introduced as we go along with the example from listing
2. In the second step the existence of undefined behaviour in at
least one execution is tested. In the presence None is returned
and in the absence the set of all pre-executions. Formally:

cpp_memory_model opsem (p : program) =
let pre_executions = {(Xopsem, Xwitness) | opsem p Xopsem

∧ consistent_execution Xopsem Xwitness} in
if ∃X ∈ pre_executions. undefined_behaviour X
then None
else Some pre_executions

4.1 Xopsem

Xopsem is defined by the “syntactic structure of the source code
and the path of the control flow”[4] and hence is independent
from the memory model. Loosely speaking it describes the
structure of the program and is composed of a set of actions,
a set of thread ids and a simple location typing function. Fur-
thermore it contains the following binary relations:

• sequenced−before−−−−−−−−−−−−→ (sb)

• additional−synchronized−with−−−−−−−−−−−−−−−−−−−−−→ (asw)

• data−depenency−−−−−−−−−−−→ (dd)

sequenced-before is defined by the evaluation order of the
statements in the source code and the additional-synchronized-
with models synchronisation, such as thread creation and joins.
As data-depenency is related to release and consume atomics,
it will not be discussed in the context of this summary.
Actions are different memory operations and can be reads,

writes, read-modify-writes, locks, unlocks and fences. Moreover
there are qualified by an aid - action id - and a tid. Furthermore
some of them have a location l and a value v. Additionally there
are different variants, such as non-atomics (na) and atomics
with different memory order (mo). In the example only non-
atomic read and write operations are used.

action =
aid, tid : Rna l = v

| aid, tid : Wna l = v
| aid, tid : Rmo l = v
| aid, tid : Wmo l = v
| aid, tid : RMWmo l = v1/v2
| aid, tid : L l
| aid, tid : U l
| aid, tid : Fmo

Consider the short code example in listing 2, which is a frag-
ment of C/C++. To simplify the example parallel composition
is used instead of the regular thread creation and joining, which
causes additional memory operations and is expressed by: {{{
. . . ||| . . . }}}.
As the statements x = 1 and y = 2 are executed in two

separate threads, the short example has in total three threads.
The statement x = 1 gives rise to the action e, 3 : Wna x = 1
and similar the comparison x == y is related to the two non-
atomic read actions: b, 1 : Rnax =?. (Value replaced by ?
as the value of x is unknown without a consistent reads-from
relation). For readability from now on the thread ids and the

2

1 int main() {
2 int x, y, z, a;
3 {{{ x = 1;
4 ||| y = 2;
5 }}};
6 a = 1;
7 z = (x == y);
8 return 0;
9 }

Listing 2: Cppmem
Input

a:W a=1

c:R y=? b:R x=?

e:W x=1

d:W z=?

f:W y=2

sb

sb

asw

sb

sb

asw

na subscript are elided, as they are clear from the context. By
further inspecting the code one can infer the two edges of the
additional-synchronized-with caused by the implicit join of the
parallel composition and the five edges of the sequenced-before
(the transitive edge is omitted in the picture). Note that the
read operations in line 7 are not ordered by sb, as C++ does
not specify the evaluation order, in fact the values could also
be computed in parallel.

4.2 Xwitness

While there exists exactly one Xopsem for every program p, the
different ways of executing a program is modelled by different
Xwitness’es. It is composed of three binary relations:

• reads−from−−−−−−−−→ (rf)

• sequential−consistency−−−−−−−−−−−−−−−−→ (sc)

• modification−order−−−−−−−−−−−−−→ (mo)

The reads-from relation contains edges from writes to reads.
While the sequential-consistency relation totally orders all mu-
tex and sequentially consistent actions, the modification-order
relation total orders all atomic writes at a specific memory loca-
tion. As the example only contains non-atomic variable access,
the second and the third relation are empty.
In order to add X = (Xopsem, (rf, sc,mo)) to the set of pre-

executions, one has to find a consistent reads-from relation.

consistent_execution =
well_formed_threads (+)

∧ consistent_locks (*)
∧ consistent_inter_thread_happens_before (§)
∧ consistent_sc_order (*)
∧ consistent_modification_order (*)
∧ well_formed_reads_from_mapping
∧ consistent_reads_from_mapping

Predicates marked with a (*) are irrelevant to the example, as
they refer to atomic actions. Furthermore predicates with a (+)
ensure sanity properties and are uninteresting. Additionally the
third predicate can be discarded, as by theorem 1 from [4], §2.10
it is redundant, because no consume operations are contained
in the example.

well_formed_reads_from_mapping =
∀a rf−→ b. same_location a b ∧
is_write a ∧ is_read b ∧
value_read_by b = value_written_by a ∧
∀a′ rf−→ b.(a = a′)

As the well-formedness predicate constrains reads-from to re-
late only a write and read action with the same location, rf is
upper-bounded by {(e, b), (f, c)} in this example. Additionally
the relation has to respect visible side effects, which are de-
fined using the happens-before relation, which partially orders
all actions. In this example the relation can be simplified to:

happens−before−−−−−−−−−−−→= (
sb−→ ∪ asw−−→)+

a
visible−side−effect−−−−−−−−−−−−−→ b =

a
happens−before−−−−−−−−−−−→ b ∧

is_write a ∧ is_read b ∧ same_location a b ∧
¬(∃c.(c 6= a) ∧ (c 6= b) ∧ is_write c ∧ same_location c b ∧

a
happens−before−−−−−−−−−−−→ c

happens−before−−−−−−−−−−−→ b)

In the context of the example: f vse−−→ c and e
vse−−→ b.

consistent_reads_from_mapping =
(∀b.(is_read b ∧ is_at_non_atomic_location b) =⇒)

(if (∃avse.avse
visible−side−effect−−−−−−−−−−−−−→ b)

then (∃avse.avse
visible−side−effect−−−−−−−−−−−−−→ b ∧ avse

rf−→ b)
else ¬(∃a.a rf−→ b))∧ . . .

As all reads in the program are non-atomic and every read is
covered by vse, all consistent reads-from are lower bounded by
vse.

{(e, b), (f, c)} = vse ⊆ rf ⊆ {(e, b), (f, c)}
Hence there exists only one reads-from relation and there is

only one candidate execution.

a:W a=1

c:R y=2 b:R x=1

e:W x=1

d:W z=0

f:W y=2

hb

hb

rf

hb

rf

hb

hb

hb

4.3 Undefined Behaviour

Finally pre-executions is checked for undefined behaviour. In
the context of this example there are three different types of
undefined behaviour relevant.

Indeterminate Reads. By inspecting the graph of the candi-
date execution, one can see that both read actions are satisfied
by a previous write action. Thus the program is free of inde-
terminate reads.

indeterminate_reads = {b.is_read b ∧ ¬(∃a.a rf−→ b)}

Unsequenced Races. An unsequenced race occurs, if there are
two actions in the same thread unrelated by sb accessing the
same location and at least one is a write, e.g. x == (x = 2).
While there are two unsequenced actions b and c, both of them
are reads and thus race-free.

unsequenced_races = {(a, b).(a 6= b) ∧ same_thread a b ∧
same_location a b ∧ (is_write a ∨ is_write b) ∧
¬(a sequenced−before−−−−−−−−−−−−→ b ∨ b

sequenced−before−−−−−−−−−−−−→ a)}

3

Data Races. Similar to unsequenced races data races occur, if
two actions from different threads unrelated by hb are accessing
the same location and at least one is a write. Again, in our
example there are two concurrent writes (e and f), although
two different locations. Hence there is no data-race.

data_races = {(a, b).(a 6= b) ∧ ¬same_thread a b ∧
same_location a b ∧ (is_write a ∨ is_write b) ∧
¬(is_atomic_action a ∧ is_atomic_action b) ∧
¬(a happens−before−−−−−−−−−−−→ b ∨ b

happens−before−−−−−−−−−−−→ a)}

As the candidate executions are free of undefined behaviour
the pre-executions set represents all possible executions of the
program p.

5 Applications of the Model

Batty et al. used their formal model to explore different aspects
of the C++ concurrency. During this research they discovered
besides other issues, that memory_order_seq_cst was in fact
not sequentially consistent in one of the drafts. Furthermore
they proved the correctness of the compilation strategy for the
x86-TSO model. In another study they extend the research to
other architectures such as the POWER in [7]. These efforts can
be seen as an important step towards a verified C++ compiler.

References

[1] std::memory_order - cppreference.com, . URL http://
en.cppreference.com/w/cpp/atomic/memory_order. Ac-
cessed 9.4.2013.

[2] C++ atomic types and operations, . URL http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/
2007/n2427.html. Accessed 9.4.2013.

[3] Dekker’s algorithm. URL http://www.cs.utexas.edu/
users/EWD/transcriptions/EWD01xx/EWD123.html. Ac-
cessed 9.4.2013.

[4] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and
Tjark Weber. Mathematizing c++ concurrency. SIGPLAN
Not., 46(1):55–66, January 2011. ISSN 0362-1340. doi:
10.1145/1925844.1926394. URL http://doi.acm.org/10.
1145/1925844.1926394.

[5] Hans-J. Boehm. Threads cannot be implemented as a li-
brary. SIGPLAN Not., 40(6):261–268, June 2005. ISSN
0362-1340. doi: 10.1145/1064978.1065042. URL http:
//doi.acm.org/10.1145/1064978.1065042.

[6] Scott Owens, Susmit Sarkar, and Peter Sewell. A better
x86 memory model: x86-TSO (extended version). Tech-
nical Report UCAM-CL-TR-745, University of Cambridge,
Computer Laboratory, March 2009. URL http://www.cl.
cam.ac.uk/techreports/UCAM-CL-TR-745.pdf.

[7] Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark
Batty, Peter Sewell, Luc Maranget, Jade Alglave, and Derek
Williams. Synchronising c/c++ and power. SIGPLAN
Not., 47(6):311–322, June 2012. ISSN 0362-1340. doi:
10.1145/2345156.2254102. URL http://doi.acm.org/10.
1145/2345156.2254102.

[8] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa
Nardelli, and Magnus O. Myreen. x86-tso: a rigorous and
usable programmer’s model for x86 multiprocessors. Com-
mun. ACM, 53(7):89–97, July 2010. ISSN 0001-0782. doi:
10.1145/1785414.1785443. URL http://doi.acm.org/10.
1145/1785414.1785443.

4

