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Mutex Algorithms

• At most one thread is in the critical section at any time.
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Dekker’s Mutex Algorithm [2]

Initialisation

1 x = 0; y = 0;

Thread 1

1 x = 1;
2 if (y == 1) {
3 ... //Busy Wait
4 }
5 // Critical Section

Thread 2

1 y = 1;
2 if (x == 1) {
3 ... //Busy Wait
4 }
5 // Critical section

1 MOV [x] <- 1
2 MOV r1 <- [y]

1 MOV [y] <- 1
2 MOV r2 <- [x]
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Modern x86 Multiprocessors - simplified (based on [4])

H/W Thread 1

r1 r2

H/W Thread 2

r1 r2

Shared Memory
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Modern x86 Multiprocessors - simplified

H/W Thread 1

r1 r2

H/W Thread 2

r1 r2

Shared Memory

Write B. Write B.
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Modern x86 Multiprocessors and Dekker’s Algorithm

H/W Thread 1

- -

H/W Thread 2

- -

x = 0, y = 0

- -
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Modern x86 Multiprocessors and Dekker’s Algorithm

H/W Thread 1

r1 = 0 -

H/W Thread 2

- -

x = 0, y = 0
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Modern x86 Multiprocessors and Dekker’s Algorithm

H/W Thread 1

r1 = 0 -

H/W Thread 2

- r2 = 0

x = 0, y = 0

x = 1 y = 1
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Modern x86 Multiprocessors

• Both threads may enter the critical section at the same time!

• Due to write buffers threads may see a subtly different memory.
• The processor exhibits a relaxed memory model.
• Solutions:
◦ Assembler: FENCE instructions.
◦ C++11: Special types. (Atomics)

• Sequential consistency is restored by paying a performance penalty.
• Some Non-x86 architectures exhibit even weaker models, e.g ARM.
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Mathematizing C++ Concurrency ([3])

• Given a program p, what are the possible ways to execute it?

1. Calculate Xopsem from p.
• Loosely speaking: Structure of the program.

2. Find all Xwitness consistent with Xopsem.
• Loosely speaking: Different executions of the program.

3. Check for undefined behaviour.
• Reading from uninitialized variables
• Unsequenced Races (e.g. x == (x = 2))
• Data Races
• ...
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Xopsem: An Example

1 int main() {
2 int x, y, z, a;
3 {{{ x = 1;
4 ||| y = 2;
5 }}};
6 a = 1;
7 z = (x == y);
8 return 0;
9 }
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e:W x=1
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Xopsem

• Independent from the architecture

• Composed of (among other parts):
◦ Actions (simplified)

• aid : R l = v
• aid : W l = v

◦ Binary relations:

• sequenced−before−−−−−−−−−−→ (sb)
• additional−synchronized−with−−−−−−−−−−−−−−−−−−→ (asw)

• In this special case: simple−happens−before−−−−−−−−−−−−−−→=

(
sequenced−before−−−−−−−−−−−→ ∪ additional−synchronized−with−−−−−−−−−−−−−−−−−−→)+
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Xwitness : An Example

1 int main() {
2 int x, y, z, a;
3 {{{ x = 1;
4 ||| y = 2;
5 }}};
6 a = 1;
7 z = (x == y);
8 return 0;
9 }

a:W a=1

c:R y=? b:R x=?

e:W x=1

d:W z=(x? == y?)

f:W y=2

hb

hb

hb hb

hb

hb
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Xwitness

• Dependent on the architecture

• Composed of:
◦ Binary relations:

• reads−from−−−−−−−→ (rf)
• sequentialconsistency−−−−−−−−−−−−→ (sc) (not applicable in the example)
• modificationorder−−−−−−−−−−→ (mo) (not applicable in the example)
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X = (Xopsem,Xwitness) : An execution candidate

1 int main() {
2 int x, y, z, a;
3 {{{ x = 1;
4 ||| y = 2;
5 }}};
6 a = 1;
7 z = (x == y);
8 return 0;
9 }

a:W a=1

c:R y=2 b:R x=1

e:W x=1

d:W z=0

f:W y=2

hb

hb

rf

hb

rf

hb

hb

hb
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X = (Xopsem,Xwitness) : Undefined Behaviour?

• Uninitialised Reads?

×

• Unsequenced Races?

×

• Data Races?

×

a:W a=1

c:R y=2 b:R x=1

e:W x=1

d:W z=0

f:W y=2

hb

hb

rf

hb

rf

hb

hb

hb

25 / 35



X = (Xopsem,Xwitness) : Undefined Behaviour?

• Uninitialised Reads? ×
• Unsequenced Races?

×

• Data Races?

×

a:W a=1

c:R y=2 b:R x=1

e:W x=1

d:W z=0

f:W y=2

hb

hb

rf

hb

rf

hb

hb

hb

25 / 35



X = (Xopsem,Xwitness) : Undefined Behaviour?

• Uninitialised Reads? ×
• Unsequenced Races? ×
• Data Races?

×

a:W a=1

c:R y=2 b:R x=1

e:W x=1

d:W z=0

f:W y=2

hb

hb

rf

hb

rf

hb

hb

hb

25 / 35



X = (Xopsem,Xwitness) : Undefined Behaviour?

• Uninitialised Reads? ×
• Unsequenced Races? ×
• Data Races? ×

a:W a=1

c:R y=2 b:R x=1

e:W x=1

d:W z=0

f:W y=2

hb

hb

rf

hb

rf

hb

hb

hb

25 / 35



Undefined Behaviour: Data Races

1 int main() {
2 int x = 0;
3 {{{ x = 1;
4 ||| x = 2;
5 }}};
6 return x;
7 }

a:W x=0

c:W x=1

b:R x=?

d:W x=2

asw

aswasw

asw

26 / 35



Undefined Behaviour: Data Races

1 int main() {
2 int x = 0;
3 {{{ x = 1;
4 ||| x = 2;
5 }}};
6 return x;
7 }

a:W x=0

c:W x=1

b:R x=?

d:W x=2

hb

hbhb

hb
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Undefined Behaviour: Data Races

1 int main() {
2 int x = 0;
3 {{{ x = 1;
4 ||| x = 2;
5 }}};
6 return x;
7 }

a:W x=0

c:W x=1

b:R x=?

d:W x=2

hb

dr
hbhb

hb
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The Formalised C++ Memory Model

cpp_memory_model opsem (p : program) =
let pre_executions = {(Xopsem,Xwitness) |

opsem p Xopsem ∧ consistent_execution Xopsem Xwitness} in
if ∃X ∈ pre_executions. undefined_behaviour X
then NONE
else SOME pre_executions
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C++11 Concurrency / Language Features

Concurrency Idioms (Atomics, Mutexes, Threads)

Pre-C++11
• No memory model for multi-threaded code
• Concurrency Idioms provided by a third party:
◦ pthreads
◦ OpenMP

• Drawbacks: No formalised standard, compiler may produce
incorrect code.

C++11
• A memory model for multi-threaded code
• Concurrency Idioms in are part of the language (std::atomic<T>
[1], std::mutex, std::thread)
◦ Similar to Java

• Benefits: Compiler is able to produce correct code.

30 / 35



C++11 Concurrency / Language Features

Concurrency Idioms (Atomics, Mutexes, Threads)
Pre-C++11
• No memory model for multi-threaded code
• Concurrency Idioms provided by a third party:
◦ pthreads
◦ OpenMP

• Drawbacks: No formalised standard, compiler may produce
incorrect code.

C++11
• A memory model for multi-threaded code
• Concurrency Idioms in are part of the language (std::atomic<T>
[1], std::mutex, std::thread)
◦ Similar to Java

• Benefits: Compiler is able to produce correct code.

30 / 35



C++11 Concurrency / Language Features

Concurrency Idioms (Atomics, Mutexes, Threads)
Pre-C++11
• No memory model for multi-threaded code
• Concurrency Idioms provided by a third party:
◦ pthreads
◦ OpenMP

• Drawbacks: No formalised standard, compiler may produce
incorrect code.

C++11
• A memory model for multi-threaded code
• Concurrency Idioms in are part of the language (std::atomic<T>
[1], std::mutex, std::thread)
◦ Similar to Java

• Benefits: Compiler is able to produce correct code.
30 / 35



Applications of the Formal Memory Model

• Corrections to the C++0x standard.
◦ memory_order_seq_cst was in fact not sequentially consistent

• Confidence in memory model and specification.
• Verify correctness of prototype implementations.

Figure: Figure taken from [3]

• Developer support.
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Questions?
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Bonus: Atomics vs. Mutexes - short presentation
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Bonus: Dekker’s algorithm in CppMem

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/index.html
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