C++ Concurrency - Formalised

Salomon Sickert

Technische Universitdt Miinchen

26t April 2013



Mutex Algorithms

e At most one thread is in the critical section at any time.




Dekker's Mutex Algorithm [2]

1

Initialisation

x=0;y=0;

Thread 1 Thread 2
x = 1; 1y =1;
if (y == 1) { 2 if (x == 1) {
. //Busy Wait 3 ... //Busy Wait
} 4}
// Critical Section 5 // Critical section




Dekker's Mutex Algorithm [2]

Initialisation

1x=0; y=0;

Thread 1 Thread 2
11X = 1; 1y =1;
2 if (y == 1) { 2 if (x == 1) {
3 . //Busy Wait 3 ... //Busy Wait
4} 4%}
5 // Critical Section 5 // Critical section
1 MOV [x] <- 1 1 MOV [y] <- 1
2 MOV r1 <- [y] 2 MOV r2 <- [x]

3/35



Modern x86 Multiprocessors - simplified (based on [4])

rl r2 rl r2

H/W Thread 1 H/W Thread 2

Shared Memory

4/35



Modern x86 Multiprocessors - simplified

rl r2 rl r2
H/W Thread 1 H/W Thread 2
Write B. Write B.

Shared Memory

5/35



Modern x86 Multiprocessors and Dekker's Algorithm

H/W Thread 1 H/W Thread 2




Modern x86 Multiprocessors and Dekker's Algorithm

H/W Thread 1 H/W Thread 2




Modern x86 Multiprocessors and Dekker's Algorithm

H/W Thread 1 H/W Thread 2

%
Il

-

<
Il
—




Modern x86 Multiprocessors and Dekker's Algorithm

rl=0 - - -

H/W Thread 1 H/W Thread 2

%
Il
-

<
Il
—




Modern x86 Multiprocessors and Dekker's Algorithm

rl=0 - - r2=0

H/W Thread 1 H/W Thread 2

%
Il
-

<
Il
—




Modern x86 Multiprocessors

e Both threads may enter the critical section at the same time!




Modern x86 Multiprocessors

e Both threads may enter the critical section at the same time!

e Due to write buffers threads may see a subtly different memory.




Modern x86 Multiprocessors

e Both threads may enter the critical section at the same time!
e Due to write buffers threads may see a subtly different memory.
e The processor exhibits a relaxed memory model.




Modern x86 Multiprocessors

Both threads may enter the critical section at the same time!

Due to write buffers threads may see a subtly different memory.

The processor exhibits a relaxed memory model.
Solutions:

o Assembler: FENCE instructions.
o C++11: Special types. (Atomics)




Modern x86 Multiprocessors

Both threads may enter the critical section at the same time!

Due to write buffers threads may see a subtly different memory.

The processor exhibits a relaxed memory model.
Solutions:

o Assembler: FENCE instructions.
o C++11: Special types. (Atomics)

Sequential consistency is restored by paying a performance penalty.




Modern x86 Multiprocessors

Both threads may enter the critical section at the same time!

Due to write buffers threads may see a subtly different memory.

The processor exhibits a relaxed memory model.
Solutions:

o Assembler: FENCE instructions.
o C++11: Special types. (Atomics)

Sequential consistency is restored by paying a performance penalty.

Some Non-x86 architectures exhibit even weaker models, e.g ARM.

11 /35



Mathematizing C++ Concurrency ([3])

e Given a program p, what are the possible ways to execute it?




Mathematizing C++ Concurrency ([3])

e Given a program p, what are the possible ways to execute it?
1. Calculate Xopsem from p.

e Loosely speaking: Structure of the program.




Mathematizing C++ Concurrency ([3])

e Given a program p, what are the possible ways to execute it?
1. Calculate Xopsem from p.
e Loosely speaking: Structure of the program.
2. Find all Xyitness consistent with Xpsem.

e Loosely speaking: Different executions of the program.




Mathematizing C++ Concurrency ([3])

e Given a program p, what are the possible ways to execute it?
1. Calculate Xopsem from p.
e Loosely speaking: Structure of the program.
2. Find all Xyitness consistent with Xpsem.
e Loosely speaking: Different executions of the program.

3. Check for undefined behaviour.

e Reading from uninitialized variables

e Unsequenced Races (e.g. x == (x = 2))
[ ]

°

Data Races




Xopsem: An Example

1 int main() {
2 int x, y, 2z, a;

3 {{{ x=1;
a |l y=2;
5 }}},

6 a=1;
7 Z:(x::y);
s return O;




Xopsem: An Example

1 int main() {
2 int x, y, 2z, a;

eW x=1

3 {{{ x=1;
a |l oy =2
5 3

6 a=1;
7 Z:(x::y);
s return O;




Xopsem: An Example

1 int main() { f:W y=2 eW x=1
2 int x, y, 2z, a;

s {{ x=1;

4 [1] y = 2;

5 3

6 a=1;
7 Z:(x::y);
s return O;




Xopsem: An Example

1 int main() { f:W y=2 e:W x=1

2

=~ w

© o] ~ [} wt

int x,
{ x
[y
i3

a=1;
z = (x
return

Yy, Z2, a;
=1; a:W a=1
2;

c:R y=? b:R x=7

==y); d:W z=(x? ==y?)
0;




Xopsem: An Example

f:W y=2 eW x=1
1 int main() {
2 int x, y, 2z, a;
s {4 x-1; a:W a=1
a Iy =2; 'A) \f‘b
5 }}};
6 a=1; cRy=7? b:R x=7
7oz = (x=y); sb %b
s return O;
o} d:W z=(x? ==y?)

17 /35



Xopsem: An Example

f:W y=2 e:W x=1
1 int main() { w‘sw /
2 int x, y, 2z, a;
3 {{{ x=1; a:W a=1
o 1y =2 / \
5% NP
6 a=1; cRy="? b:R x=7
7z =(x==7y);
8 return 0; \fb sb
0} d:W z=(x? ==y7)




Xopsem

e Independent from the architecture




Xopsem

e Independent from the architecture

e Composed of (among other parts):
o Actions (simplified)
e aid:RI=v
e aid : W il=v




Xopsem

e Independent from the architecture
e Composed of (among other parts):
o Actions (simplified)
e aid:RI=v
e aid: Wil=v
o Binary relations:
o sequenced — before (Sb)

additional —synchronized — with

(asw)




Xopsem

e Independent from the architecture
e Composed of (among other parts):
o Actions (simplified)
e aid:RI=v
e aid: Wil=v
o Binary relations:
o sequenced — before (Sb)

additional —synchronized — with

(asw)

simple—happens— before

e In this special case: =

( sequenced — before U additional —synchronized — with ) n

19 / 35



Xwitness: An Example

f:W y=2 eW x=1
1 1nt main() { \b ﬁb
2 int x, y, z, a;
3 {{{ x=1; a:W a=1
a1y =2 / \
5 133N hb
6 a=1; cRy="? b:R x="?
7z = (x ==1y);
8 return 0; \bb ﬁb
o} d:W z=(x? ==y7)

20 / 35



Xwitness: An Example

f:W y=2 eW x=1
1 1nt main() { \_Lb %b
2 int %, y, z, a;
3 {{{ x=1; rf a:W a=1
a1y =2 / \
5 }}}, hb
6 a=1; cRy=2 b:R x=7
7z = (x ==1y);
8 return 0; \bb ﬁb
o} d:W z=(x? == 2)

21/ 35



Xwitness: An Example

f:W y=2 e'W x=1
1 in‘.c main() { \b ﬁb
2 int %, y, z, a;
3 {{{ x=1; rf a:W a=1 rf
4 [y =2;
5 }}}; / \ij
6 a = 1; cRy=2 b:R x=1
7z = (x ==1y);
s return O; Nb hb
o} d:W z=0

22 /35



X witness

e Dependent on the architecture




X witness

e Dependent on the architecture

e Composed of:

o Binary relations:
reads— from
— (rf)




X witness

e Dependent on the architecture

e Composed of:

o Binary relations:
reads— from
— (rf)

sequentialconsistency

(sc) (not applicable in the example)

modificationorder

(mo) (not applicable in the example)




f:W y=2 eW x=1
2 int x, y, z, a;
3 {{{ x=1; rf a:W a=1 rf
4 [y =2;
5 }}}; / \ij
6 a = 1; cRy=2 b:R x=1
7z =(x==7y);
s return O; \b hb
o} d:W z=0

24 / 35



X = (Xopsem, Xwitness) : Undefined Behaviour?

f:W y=2 eW x=1

N

rf aW a=1 rf

e Uninitialised Reads?
e Unsequenced Races? / Nb

e Data Races? cRy=2 b:R x=1
\b ﬁb
d:W z=0

25 / 35



X = (Xopsem, Xwitness) : Undefined Behaviour?

f:W y=2 eW x=1

N

rf aW a=1 rf

e Uninitialised Reads? x
e Unsequenced Races? / Nb

e Data Races? cRy=2 b:R x=1
\b ﬁb
d:W z=0

25 / 35



X = (Xopsem, Xwitness) : Undefined Behaviour?

f:W y=2 eW x=1

N

rf aW a=1 rf

e Uninitialised Reads? x
e Unsequenced Races? x / Nb

e Data Races? cRy=2 b:R x=1
\b ﬁb
d:W z=0

25 / 35



X = (Xopsem, Xwitness) : Undefined Behaviour?

f:W y=2 eW x=1

N

rf aW a=1 rf

e Uninitialised Reads? x
e Unsequenced Races? x / Nb

e Data Races? x cRy=2 b:R x=1
\b ﬁb
d:W z=0

25 / 35



Undefined Behaviour: Data Races

a:W x=0
1 int main() { /sw \eisw
2 int x = 0;
3 {{{x=1; W x=1 d:W x=2
‘ Hx= 25 \fw /sw
5 3},
6 return Xx; b:R x=7
7}




Undefined Behaviour: Data Races

a:W x=0
1 1nt main() { %b \b
2 int x = 0;
s {{{x=1; W x=1 d:W x=2
a Il x=2;
Y \b hb
6 return x; b:R x=7
7 }




Undefined Behaviour: Data Races

a:W x=0
1 1nt main() { %b \b
2 int x = 0; dr
3 {{{ x=1; Wx=1—""d:Wx=2
a Il x=2;
Y hb hb
6 return x; b:R x=7
7 }




The Formalised C++4+ Memory Model

cpp_memory model opsem (p : program) =
let pre_executions = {(Xopsem, Xwitness) |
opsem p Xopsem /A consistent _execution Xopsem Xwitness} in
if 3X € pre_executions. undefined behaviour X
then NONE
else SOME pre _executions




C++11 Concurrency / Language Features

Concurrency Idioms (Atomics, Mutexes, Threads)




C++11 Concurrency / Language Features

Concurrency Idioms (Atomics, Mutexes, Threads)
Pre-C++411

e No memory model for multi-threaded code

e Concurrency ldioms provided by a third party:
o pthreads
o OpenMP

e Drawbacks: No formalised standard, compiler may produce
incorrect code.




C++11 Concurrency / Language Features

Concurrency Idioms (Atomics, Mutexes, Threads)
Pre-C++411
e No memory model for multi-threaded code

e Concurrency ldioms provided by a third party:
o pthreads
o OpenMP

e Drawbacks: No formalised standard, compiler may produce
incorrect code.

C++11

e A memory model for multi-threaded code

e Concurrency Idioms in are part of the language (std::atomic<T>
[1], std::mutex, std::thread)
o Similar to Java

e Benefits: Compiler is able to produce correct code.
30 /35



Applications of the Formal Memory Model

e Corrections to the C++0x standard.
o memory order seq cst was in fact not sequentially consistent




Applications of the Formal Memory Model

e Corrections to the C++0x standard.
o memory order seq cst was in fact not sequentially consistent

e Confidence in memory model and specification.




Applications of the Formal Memory Model

e Corrections to the C++0x standard.
o memory order seq cst was in fact not sequentially consistent

e Confidence in memory model and specification.

e Verify correctness of prototype implementations.

consistent_execution

Eopsem . Xwitness
evt_compl evt_comp™ 1
Ex86 XX86

valid_execution

Figure: Figure taken from [3]

31/35



Applications of the Formal Memory Model

e Corrections to the C++0x standard.
o memory order seq cst was in fact not sequentially consistent

e Confidence in memory model and specification.

e Verify correctness of prototype implementations.

consistent_execution
Eopsem . Xwitness
evt_compl evt_comp™ 1
Ex86 XX86

valid_execution

Figure: Figure taken from [3]

e Developer support.

31/35



Questions?




Bonus: Atomics vs. Mutexes - short presentation

8/Master Seminar Software Verification/code

File Edit View Search Terminal Help
[salomon@sputnik codel$ ./non_atomic.o
Final counter value is 8785553

Elapsed Time is 70000

[salomon@sputnik code]$ ./atomic.o
Final counter value is 10000000

Elapsed Time is 370000
[salomon@sputnik code]$ ./mutex.o
Final counter value is 10000000
Elapsed Time is 3.47e+06
[salomon@sputnik codel$ I

33 /35



Bonus: Dekker's algorithm in CppMem

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/index.html



http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/index.html

References

[§ C+4+ atomic types and operations, http://www.open-
std.org/jtcl/sc22/wg21/docs/papers/2007 /n2427 .html.

[3 Dekker's algorithm,
http://www.cs.utexas.edu/users/ewd /transcriptions/ewd01xx/ewd123.

[§ Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark
Weber.
Mathematizing c++ concurrency.
SIGPLAN Not., 46(1):55-66, January 2011.

ﬁ Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa
Nardelli, and Magnus O. Myreen.
x86-tso: a rigorous and usable programmer’'s model for x86
multiprocessors.
Commun. ACM, 53(7):89-97, July 2010.

35/ 35



