
Algorithms for Programming Contests - Week 1

Prof. Dr. Javier Esparza
Pranav Ashok,Tobias Meggendorfer,

Philipp Meyer,Mikhail Raskin,
conpra@in.tum.de

7. Juli 2019



Algorithms for Programming Contests - Week 1

Content of the Course

General Concept

• Theoretical background about several concepts and algorithms.

• Learn and prepare for programming contests, job interviews,
algorithmic challenges.

• If interested: Take notes!



Algorithms for Programming Contests - Week 1

Content of the Course

The Problem Sets

• Available on the course homepage, accessible with password only
(ask us for it).

• Usually, five problems per week:
• two easy (4 Points each),
• two medium (6 Points each),
• one hard (8 Points).

• Apply algorithms and concepts from the lecture.

• Each week’s problems are (mostly) about the topics from that
week’s lecture.

• There will be hints in the lectures.

Have a Problem with a Problem?

Should difficulties arise: Ask questions! Come to our offices or write a
clarification request!



Algorithms for Programming Contests - Week 1

Content of the Course

Grading

Your final grade will be determined by how many points you earned, as
well as an oral exam at the end of the semester. The oral exam will
account for 40% of the grade.
The (tentative) key for grading the problems is the following:

Percentage Grade

≥ 90% 1.0
≥ 85% 1.3
≥ 80% 1.7
≥ 75% 2.0
≥ 70% 2.3
≥ 65% 2.7
≥ 60% 3.0
≥ 55% 3.3
≥ 50% 3.7
≥ 40% 4.0



Algorithms for Programming Contests - Week 1

Content of the Course

Topics

1 Introduction

2 Data Structures (UF, Binary Search, Graphs)

3 Graphs, Minimum Spanning Trees, DFS, BFS

4 Shortest Paths

5 Maximum Flows

6 Brute Force / Backtracking

7 Greedy

8 Dynamic Programming

9 Number Theory

10 Trees

11 Geometry

12 Projective Geometry

13 Contest

14 Conclusion



Algorithms for Programming Contests - Week 1

Judge

Official DOMjudge System

• In use for programming contests such as the GCPC or the ICPC.

• On the web:

TUMjudge

https://judge.in.tum.de

https://judge.in.tum.de


Algorithms for Programming Contests - Week 1

Judge

Registration

• Registration necessary.



Algorithms for Programming Contests - Week 1

Judge

Login

• Authentification necessary.

• Works with LDAP and is identical with the login to the computer
lab (“Rechnerhalle”).

• Login is “name” in name@in.tum.de.
• Password is the corresponding password.

• Forgot your password and want to change / reset it?
• Get in contact with the RBG, not with us!



Algorithms for Programming Contests - Week 1

Judge

Overview

The overview page shows several pieces of information:

• the personal scoreboard of the current contest,

• an overview of already submitted programs,

• an overview of clarifications (more on that later on).



Algorithms for Programming Contests - Week 1

Judge

Overview



Algorithms for Programming Contests - Week 1

Problems

Problem structure

A problem consists of several parts:

• name, abbreviation, difficulty,

• problem author,

• problem statement,

• input format specification,

• output format specification,

• constraints,

• sample input and output.



Algorithms for Programming Contests - Week 1

Problems

Submitting programs

Submitting program is done on the TUMjudge web interface entirely.

• No files to be sent via e-mail etc.

• Only source code files are uploaded, no .class files or similar.

Submit

• Choose files to be uploaded by Drag-and-Drop or in the menu
“Choose Files”,

• Choose problem,

• Choose language (unless already chosen automatically),

• “submit”,

• F5, F5, F5, F5, . . .



Algorithms for Programming Contests - Week 1

Problems

Submitting programs



Algorithms for Programming Contests - Week 1

Problems

Judging

The TUMjudge

• compiles,

• executes,

• tests

the submission against several test cases. As long as the TUMjudge is
working on a submission, the submission’s status is “PENDING”.
The submission is treated instantaneously and the TUMjudge (usually)
announces its verdict within a few moments.



Algorithms for Programming Contests - Week 1

Problems

Judging

The following verdicts can occur:

CORRECT

The submission successfully solved all the test cases.

COMPILER-ERROR

The submission could not be compiled. The exact error message can be
seen on the submission’s detail page.

NO-OUTPUT

The submission does not produce any output. Be sure to output to
“standard out”.



Algorithms for Programming Contests - Week 1

Problems

Judging

TIMELIMIT

The submission runs longer than the maximal allowed time and was
terminated.
Possible reasons:

• The submission runs in an endless loop.

• The submission is not efficient enough.

RUN-ERROR

An error occured during the submission’s execution.
Possible reasons:

• Division by 0.

• Incorretly addressing memory locations, e.g.
ArrayIndexOutOfBounds.

• Using more memory than the allowed memory limit.



Algorithms for Programming Contests - Week 1

Problems

Judging

WRONG-ANSWER

The submission’s output is incorrect.
Possible reasons:

• The answer is just wrong.

• The answer does not conform to the output format specification
given on the problem set.

• The answer is not exact enough (e.g. with floating point answers
with a desired precision).

TOO-LATE

The program was submitted after the submission deadline. It is stored in
the system, but no longer processed.



Algorithms for Programming Contests - Week 1

Public Scoreboard

Scoreboard

Different background colors in-
dicate different outcomes:

Problem solved.

Problem solved first.

Incorrect submission(s).

Submission in pending
status.

No submissions.



Algorithms for Programming Contests - Week 1

Public Scoreboard

Scoreboard

Order (tie-breakers):

1 number of solved problems,

2 score:
• per problem: (number of incorrect submissions) ∗ (penalty time) +

(time for the first correct submission),
• penalty time = 600, i.e., 10 hours,

• e.g. 3/1820 indicates: the problem was solved with 3 submissions,

with a total penalty time of 1820.

You can submit any number of times to solve a problem!

Each week’s score itself (apart from the number of problem solved) does
not change the grading at the end of the semester, it only affects the
position in the scoreboard of that week.



Algorithms for Programming Contests - Week 1

Public Scoreboard

Scoreboard

Anybody who does not want to be seen in the public scoreboard, must
choose the invisibility option during the registration (in “Category”).



Algorithms for Programming Contests - Week 1

Clarifications

Clarifications

• Messages to the system administrators, i.e., the teaching assistants
and/or tutors.

• Sent via the “request clarification” form on the overview page.

• Used for questions about the problems or about the system in
general.

• Please choose a subject accordingly: either “general” or the specific
problem.

• Depending on the actual question, the answer is only visible to the
persons who sent the question, or it is published to all users of the
system.

• The answer (along with the question) can be seen on the right side
on the overview page.



Algorithms for Programming Contests - Week 1

Clarifications

Clarifications



Algorithms for Programming Contests - Week 1

Restrictions

Restrictions

• Compilation of a submission may take no longer than 30 seconds.
After that time, compilation is aborted and the verdict will be a
COMPILER-ERROR.

• The maximal allowed size of a source code file is 256 KB. Bigger
submissions will not be accepted.

• During the execution of a submissions, up to 8 GB of memory is
available. This includes source code, variables, stack, Java VM (up
to 0,35 GB),... If a submission tries to address more memory, it will
be terminated and the verdict will be a RUN-ERROR.

• It is not allowed to use multi threading. Each submission has only
one processor fully at its disposal.



Algorithms for Programming Contests - Week 1

Restrictions

Restrictions

Tampering with the system in any way will be penalized!
Do not fool the system!

• Do not open files, input is always in “standard in”.

• Do not address files locally on the system! This is not possible
anyways.

• Do not open network connections.

• . . .

Furthermore, please keep the number of submissions at an acceptable
level as to not unnecessarily slow judging for all participants.



Algorithms for Programming Contests - Week 1

Sample source code

Java Submission

import java.util.Scanner;

public class JavaSubmission {

public static void main(String [] args) {

// create scanner object

Scanner s = new Scanner(System.in);

// loop over all test cases

int t = s.nextInt ();

for(int i = 1; i <= t; i++) {

// read several types of input

boolean b = s.nextBoolean ();

String st = s.next ();

// output: use the possibility you like more

System.out.println("Case #"+i+": "+st);

System.out.format("Case %d#: %s\n", i, st);

}

s.close ();

}

}



Algorithms for Programming Contests - Week 1

Sample source code

C++ Submission

#include <iostream >

#include <stdio.h>

int main() {

// loop over all test cases

int t;

scanf("%d", t);

for(int i = 1; i <= t; i++) {

// read several types of input

int j;

std:: string s1;

char s2 [101];

// use the possibility you like more

std::cin >> j >> s1;

scanf("%d %100s", &j, s2);

// output: use the possibility you like more

std::cout << "Case #" << i << ": " << s1 << std::endl;

printf("Case #%d: %s %d", i, s2, j);

}

return 0;

}



Algorithms for Programming Contests - Week 1

Sample source code

Python Submission

import sys

if __name__ == ’__main__ ’:

case_count = int(sys.stdin.readline ())

for case_number in range(1, case_count + 1):

n, k = map(int , sys.stdin.readline (). split ())

print("Case #{0}: {1}".format(case_number , n + k))



Algorithms for Programming Contests - Week 1

Hints for Solving Problems

Understanding Problems

• Read the problem statement very carefully.

• Also the constraints, think about special cases:
• E.g. if there are negative values or 0 allowed, then there is probably a

test case for that.
• E.g. special characters or a space when dealing with strings.
• ...



Algorithms for Programming Contests - Week 1

Hints for Solving Problems

Solving Problems

• Code efficiently.
• Think about which data types to use.
• Sometimes arrays might not have to be two- or three-dimensional.
• Implement algorithms given in the lecture with their amortized

running times.

• Look carefully at the input and output specifications and let your
program be conform to those!

• Remove all debug messages before submitting.

• Write comments!



Algorithms for Programming Contests - Week 1

Hints for Solving Problems

Code from the Internet

• You are allowed to copy code you find on the internet, but you need
to cite the correct source, otherwise we will not accept the
submission and may apply other penalties.

• Do this by putting a comment in your code stating the url or similar.

• However, we advise you to code on your own as it improves the
understanding about the algorithms involved. You probably need this
in subsequent problems anyway.



Algorithms for Programming Contests - Week 1

Hints for Solving Problems

Half Points

If the judge does not accept your solution but you are sure you solved it
correctly, use the “request clarification” option. In your request include:

• the name of the problem (by selecting it in the subject field),

• a verbose description of your approach to solve the problem,

• the time you submitted the solution we should judge.

We will check your submission and award you half the points if there is
only a minor flaw in your code.

We might use submissions from half-point requests (anonymised) as
realistic examples of subtle problems in the lectures.



Algorithms for Programming Contests - Week 1

Big Inputs / Outputs

Big Inputs / Outputs

Let’s speak about actual contents of the course!



Algorithms for Programming Contests - Week 1

Big Inputs / Outputs

Big Inputs / Outputs

• Some problems require you to read/write a substantial amount of
input/output.

• Even without doing anything else, this can take longer than the
allowed time limit when not handled correctly!

Speed up your code easily!

Use the faster readers / writers when handling big data.



Algorithms for Programming Contests - Week 1

Big Inputs / Outputs

Java - Input

Always remember to throw IOExceptions!

BufferedReader

InputStreamReader r = new InputStreamReader(System.in);

BufferedReader in = new BufferedReader(r);

String line = in.readLine ();

String [] parts = line.split(" ");

int n = Integer.parseInt(parts [0]);

double d = Double.parseDouble(parts [1]);

Scanner

Scanner s = new Scanner(System.in);

int n = s.nextInt ();

double d = s.nextDouble ();



Algorithms for Programming Contests - Week 1

Big Inputs / Outputs

Java - Input

Scanner is much more convenient to use but slower!

Input Size Scanner BufferedReader
5 Mio Integers 3321 ms 431 ms

50 Mio Integers 30988 ms 3937 ms



Algorithms for Programming Contests - Week 1

Big Inputs / Outputs

C++ - Input

cin

#include <iostream.h>

...

int n;

double d;

cin >> n >> d;

scanf

int n;

double d;

scanf ("%d %i", &n, &d);



Algorithms for Programming Contests - Week 1

Big Inputs / Outputs

C++ - Input

Input Size cin scanf
5 Mio Integers 1887 ms 552 ms

50 Mio Integers 18789 ms 5467 ms

cin synchronizes with stdio buffers.
Turning this off can make it even faster than scanf.

std:: ios_base :: sync_with_stdio(false );



Algorithms for Programming Contests - Week 1

Big Inputs / Outputs

Java - Output

Assume that we want to print the integer answer x and the case header
for case i .

println

System.out.println ("Case #" + i + ": " + x);

println

System.out.format ("Case #%d: %d\n", i, x);

BufferedWriter

OutputStreamWriter s = new OutputStreamWriter(System.out);

BufferedWriter out = new BufferedWriter(s);

out.write("Case #" + i = ": " + x + "\n");



Algorithms for Programming Contests - Week 1

Big Inputs / Outputs

Java - Output

StringBuilder (println)

StringBuilder sb = new StringBuilder ():

sb.append ("Case #");

sb.append(i);

sb.append (": ");

sb.append(x);

sb.append ("\n");

System.out.println(sb);



Algorithms for Programming Contests - Week 1

Big Inputs / Outputs

Java - Output

StringBuilder (BufferedWriter)

StringBuilder sb = new StringBuilder ():

sb.append ("Case #");

sb.append(i);

sb.append (": ");

sb.append(x);

sb.append ("\n");

OutputStreamWriter s = new OutputStreamWriter(System.out);

BufferedWriter out = new BufferedWriter(s);

out.write(sb);



Algorithms for Programming Contests - Week 1

Big Inputs / Outputs

Java - Output

Choose a method that is convenient and matches the expected size of
the output.

Output size println format BufferedWriter
5 Mio Integers 27220 ms 37250 ms 558 ms
50 Mio Integers - - 5057 ms

Output Size StringBuilder(println) StringBuilder (BufferedWriter)
5 Mio Integers 440 ms 470 ms
50 Mio Integers 4057 ms 4234 ms



Algorithms for Programming Contests - Week 1

Big Inputs / Outputs

C++ - Output

cout

#include <iostream.h>

...

cout << "Case #" << i << ": " << x << endl;

printf

printf ("Case #%d: %i\n", i, x);



Algorithms for Programming Contests - Week 1

Big Inputs / Outputs

C++ - Output

Output Size cout printf
5 Mio Integers 11927 ms 492 ms

50 Mio Integers - 4919 ms

Again, cout can be improved by using the following line.

std:: ios_base :: sync_with_stdio(false );


	Content of the Course
	Judge
	Problems
	Public Scoreboard
	Clarifications
	Restrictions
	Sample source code
	Hints for Solving Problems
	Big Inputs / Outputs

