
An SMT-based Approach to
Fair Termination Analysis

Javier Esparza
Institut für Informatik

Technische Universität München
Garching bei München, Germany

Email: esparza@in.tum.de

Philipp J. Meyer
Institut für Informatik

Technische Universität München
Garching bei München, Germany

Email: meyerphi@in.tum.de

Abstract—Algorithms for the coverability problem have been
successfully applied to safety checking for concurrent programs.
In a former paper (An SMT-based Approach to Coverability
Analysis, CAV14) we have revisited a constraint approach to
coverability based on classical Petri net analysis techniques
and implemented it on top of state-of-the-art SMT solvers. In
this paper we extend the approach to fair termination; many
other liveness properties can be reduced to fair termination
using the automata-theoretic approach to verification. We use
T-invariants to identify potential infinite computations of the
system, and design a novel technique to discard false positives,
that is, potential computations that are not actually executable.
We validate our technique on a large number of case studies.

I. INTRODUCTION

In recent years, verification problems for concurrent shared-
memory or asynchronous message-passing software have been
attacked by means of Petri net techniques. In particular, it has
been shown that safety properties or fair termination can be
solved by constructing and analyzing the coverability graph
of a Petri net, or some related object [1]–[5]. This renewed
interest on the coverability problem has led to numerous al-
gorithmic advances for the construction of coverability graphs
[4], [6]–[9].

Despite this success, the coverability problem remains com-
putationally expensive [10], since it involves exhaustive state-
space exploration. This motivates the study of cheaper incom-
plete procedures: algorithms much faster than the construction
of the coverability graph, which may prove the property
true, but also answer “don’t know”. In a recent paper, the
authors, together with other colleagues, have revisited and
further developed tests based on the marking equation and
traps, two classical Petri net analysis techniques [11]. These
techniques allow one to efficiently compute program invariants
expressed as constraints of linear arithmetic [12]–[14]. If the
states violating the property also correspond to those satisfying
a linear constraint, unsatisfiability of the complete constraint
system proves the property true. In the test suite analyzed
in [11], 83% of the positive problem instances (that is, the
instances for which the property holds) could be proved in this
way. Moreover, due to advances in SMT-solving, the constraint
systems could be solved at a fraction of the cost of state-
exploration techniques. So the technique makes sense as a
preprocessing that allows to prove many easy cases at low cost;

if the technique fails, then we can always resort to complete
state-space exploration methods.

In this paper we extend the approach to liveness properties.
As in [11], which revisited and expanded previous work,
we revisit an idea initially presented in [15], based on the
use of transition invariants. Since liveness is typically harder
than safety, and the constraint technology of 1997 was very
primitive compared to state-of-the-art SMT-solvers, the work
of [15] only explored a rather straightforward test, and only
considered one case study. In this paper we improve the
test of [15], design different implementations, compare their
performance, and validate them on numerous case studies
coming from different areas: distributed algorithms, workflow
processes, Erlang programs, and asynchronous programs.

We conclude this introduction with a brief outline of our
technique. Given an infinite execution σ of a Petri net model,
let inf (σ) be the set of transitions that occur infinitely often in
σ. We consider liveness properties such that whether σ satisfies
the property or not depends only on inf (σ). (This is not an
important restriction because, by taking the product of the
Petri net model with a suitable Büchi automaton, every LTL
property can be reduced to a property of this kind.) We say
that a set T of transitions is feasible if T = inf (σ) for some σ.
We use T-invariants (more precisely, T-surinvariants) to extract
Boolean constraints that must be satisfied by every feasible set
of transitions. However, these constraints are typically quite
weak, and have spurious solutions, that is, they are satisfied by
unfeasible sets of transitions. So we design a refinement loop
that, given a solution, tries to construct an additional constraint
that excludes it. If the refinement procedure terminates, then
the model satisfies the property.

The paper is structured as follows. Section II contains
basic definitions. Section III introduces the main technique. In
Section IV and V, we describe two methods to refine the main
technique. Section VI contains the experimental evaluation.
Finally, Section VII presents conclusions.

II. PRELIMINARIES

A net is a triple (P, T, F), where P is a set of places, T is a
(disjoint) set of transitions, and F : (P×T)∪(T×P)→ {0, 1}
is the flow function. For x ∈ P ∪ T , the pre-set is •x = {y ∈
P ∪ T | F (y, x) = 1} and the post-set is x• = {y ∈ P ∪ T |

p1:
p2:
p3:

procedure PROCESS 1
begin
bit1 := false
while true do
bit1 := true
while bit2 do skip od
(∗ critical section ∗)
bit1 := false

od
end

q1:
q2:
q3:
q4:

q5:

procedure PROCESS 2
begin
bit2 := false
while true do
bit2 := true
if bit1 then
bit2 := false
while bit1 do skip od
goto q1

fi
(∗ critical section ∗)
bit2 := false

od
end

Fig. 1. Lamport’s 1-bit algorithm for mutual exclusion [16].

F (x, y) = 1}. We extend the pre- and post-set to a subset of
P ∪ T as the union of the pre- and post-sets of its elements.
A subnet of a Petri net (P, T, F) is a triple (P ′, T ′, F ′) such
that P ′ ⊆ P , T ′ ⊆ T , and F ′ : (P ′×T ′)∪(T ′×P ′)→ {0, 1}
with F ′(x, y) = F (x, y). Since F ′ is completely determined
by F ,P ′, and T ′, we often speak of the subnet (P ′, T ′).

A marking of a net (P, T, F) is a function m : P → N.
Assuming an enumeration p1, . . . , pn of P , we often identify
m and the vector (m(p1), . . . ,m(pn)). For a subset P ′ ⊆ P
of places, we write m(P ′) =

∑
p∈P ′ m(p). A Petri net is a

tuple N = (P, T, F,m0), where (P, T, F) is a net and m0 is a
marking called the initial marking. Petri nets are represented
graphically as follows: places and transitions are represented
as circles and boxes, respectively. For x, y ∈ P ∪T , there is an
arc leading from x to y iff F (x, y) = 1. The initial marking
is represented by putting m0(p) black tokens in each place p.

A transition t ∈ T is enabled at m iff m(p) ≥ 1 for every
p ∈ •t. A transition t enabled at m may fire, yielding a new
marking m′ (denoted m

t−→ m′), where m′(p) = m(p) +
F (t, p)− F (p, t).

A sequence of transitions, σ = t1t2 . . . tr is an occurrence
sequence of N iff there exist markings m1, . . . ,mr such that
m0

t1−→ m1
t2−→ m2 . . .

tr−→ mr. The marking mr is said
to be reachable from m0 by the occurrence of σ (denoted
m0

σ−→ mr).
An infinite sequence of transitions, σ = t1t2 . . . is an infinite

occurrence sequence of N iff every finite prefix of σ is an
occurrence sequence of N (denoted m0

σ−→). The set inf (σ)
contains the transitions occurring infinitely often in σ.

A. Liveness properties

We consider a restricted notion of liveness property. Section
II-C briefly sketches how to handle general LTL properties.

A liveness property ϕ of a net N = (P, T, F,m0) is a
Boolean constraint over the free variables T . The property ϕ
holds for an infinite occurrence sequence σ (denoted σ |= ϕ)
iff Iσ |= ϕ, where Iσ(t) = 1 if t ∈ inf (σ) else 0. A
Petri net N satisfies a property ϕ (denoted N |= ϕ) iff

First Process Second Process

p3

s4

p1

s1

p2

s2

s3

t2

q3

t3

q4

t4

q2

t6

q5

t7

q1

t1

t5

bit1

bit2

nbit1

nbit2

Fig. 2. Petri net for Lamport’s 1-bit algorithm.

σ |= ϕ for every infinite occurrence sequence m0
σ−→. Note

that a liveness property is always satisfied if the Petri net
has no infinite occurrence sequences. Therefore the property
ϕ = false is equivalent to termination of the Petri net. Fair
termination properties can be expressed by means of more
complex formulas ϕ.

B. Two examples

As a first example, consider Lamport’s 1-bit algorithm for
mutual exclusion [16], shown in Fig. 1. Fig. 2 shows a Petri
net model for the code. The two grey blocks model the control
flow of the two processes. For instance, the token in place p1
models the current position of process 1 at program location
p1. The four places in the middle of the diagram model the
current values of the variables. For instance, a token in place
nbit1 indicates that the variable bit1 is currently set to false.

The main liveness property for the processes states that,
assuming a fair scheduler that allows both processes to execute
actions infinitely often, each process enters the critical section
infinitely often. For the first process, this corresponds to the
property that every infinite occurrence sequence in which at
least one of s1, . . . , s4 and one of t1, . . . , t7 occur infinitely
often, contains infinitely many occurrences of s2. As a Boolean
formula, we get (

4∨
i=1

si

)
∧

 7∨
j=1

tj

⇒ s2

For the second process we obtain a similar property.
As a second example, consider the fairly terminating asyn-

chronous program [17] given in Fig. 3. Here, the post com-
mand is a non-blocking operation for launching a process in
parallel. Initially, the process INIT is executed, which sets x
to true and launches H. Process H launches new instances of
H and G until G sets x to false . Assuming a fair scheduler,
i.e., one that will execute each process eventually, the program

h:

procedure H
begin

if x then
post H
post G

fi
end

g:

procedure G
begin
x := false

end

procedure INIT
begin
x := true
post H

end

Fig. 3. Asynchronous program [17].

Process H Process G

s

x

notx

ph

h

pg

g

s1

s2

s3

t1

t2

t3

Fig. 4. Petri net for the asynchronous program.

should terminate. This fair termination is the liveness property
we want to prove.

Transforming the program into a Petri net gives us the
net in Fig. 4. The place s models the scheduler, ph and pg
are pending instances of H and G, respectively, and h and
g are program locations. The transitions t1 and s1 dispatch
the processes, while the other transitions exit the processes
depending on the value of x. Note that the net is unbounded,
as repeatedly firing s1s2 puts arbitrarily many tokens in pg.

If the scheduler is fair and continues dispatching instances
of H and G infinitely often, the program should terminate,
giving us the liveness property s1 ∧ t1 =⇒ false , equivalent
to ¬(s1 ∧ t1).

C. LTL properties

To check general LTL properties we can use the automata-
theoretic approach. Given a property ϕ, we construct the
product of the Petri net model of the system and a Büchi
automaton for ¬ϕ. The product yields a new Petri net with
a set of accepting places. The initial net violates the property
iff the product net has an infinite sequence σ such that inf (σ)
contains at least one of the input transitions of the accepting
places. A detailed construction can be found in [15].

III. T-SURINVARIANTS

We present a procedure, called LIVENESS, which checks a
sufficient condition for a given Petri net to satisfy a liveness
property. The condition is unsatisfiability of an appropriate
linear arithmetic formula.

Definition 1 (Incidence matrix). The incidence matrix C of a
Petri net N is a |P | × |T | matrix given by

C(p, t) = F (t, p)− F (p, t)

Definition 2 (T-surinvariant). A vector X : T → Z is a T-
surinvariant of a Petri net N iff C · X ≥ 0. If moreover
C ·X = 0, then X is a T-invariant.

A T-surinvariant X is semi-positive iff X ≥ 0 and X 6= 0.
The support of a T-surinvariant X is given by ‖X‖ = {t ∈
T | X(t) > 0}.

Loosely speaking, X is a surinvariant if for every place p
and for every occurrence sequence m σ−→ m′, if σ fires each
transition t exactly X(t) times, then m(p) ≤ m′(p), that is,
the number of tokens in p can only increase. The following
theorem, where we identify X with the multiset of transitions
containing each t ∈ T exactly X(t) times, shows that the
T-surinvariants of a Petri net provide information about its
infinite runs.

Theorem 1. [13], [14] Let σ be an infinite sequence of
transitions and N a Petri net. If σ is an infinite occurrence
sequence of N , then there is a semi-positive T-surinvariant X
satisfying ‖X‖ = inf (σ).

Proof. Let σ′ be a suffix of σ containing only transitions of
inf (σ), and let σ′ = σ′1σ

′
2σ
′
3 . . . such that each σ′i contains ev-

ery transition of inf (σ) at least once. Since σ is an infinite oc-
currence sequence of N , there exist markings m1,m2,m3, . . .

such that m1
σ′1−→ m2

σ′2−→ m3
σ′3−→ By Dickson’s lemma,

there exist indices i < j such that mi ≤ mj . Let X be the
Parikh vector of σ′i . . . σ

′
j−1, i.e., the vector assigning to each

transition its number of occurrences in the sequence. By the
definition of the firing rule and the incidence matrix C, for
every place p we have mj(p) −mi(p) =

∑
t∈T C(p, t)X(t)

or, in matrix form, mj −mi = C · X . Since mj ≥ mi, we
have mj−mi ≥ 0, and so X is a semi-positive T-surinvariant.
Since σ′i . . . σ

′
j−1 contains all transitions of inf (σ), we have

‖X‖ = inf (σ).

However, a T-surinvariant does not guarantee the existence
of a corresponding occurrence sequence. Consider the net in
Fig. 4. The multiset X = {s1, s2, t1, t3} is a semi-positive
T-invariant, but, as we will see later, no infinite occurrence
sequence σ satisfies inf (σ) = {s1, s2, t1, t3}. We say that a
T-surinvariant X is realizable if there is an infinite occurrence
sequence σ with ‖X‖ = inf (σ).

For a T-surinvariant X and a liveness property ϕ, we
denote by ϕ(X) the constraint of linear arithmetic obtained by
substituting X(t) > 0 for every occurrence of t in ϕ. So, for
instance, if ϕ = t1∨t2, then ϕ(X) = X(t1) > 0∨X(t2) > 0.
By Theorem 1, if there is an infinite sequence σ such that
σ |= ϕ, then there is also a semi-positive T-surinvariant X
such that ϕ(X) holds. Taking the contrapositive, we have: if
no semi-positive T-surinvariant X satisfies ¬ϕ(X), then no
sequence σ satisfies ¬ϕ, and so N |= ϕ. This directly leads to
a semi-decision procedure for checking if a liveness property

x

notx

s2

s3

t2

t3

Fig. 5. Subnet of the net of Fig. 4.

ϕ is a property of a Petri net N : If the following constraints
are unsatisfiable, then N |= ϕ.

C(N,ϕ) ::

C ·X ≥ 0 T-surinvariant condition
X ≥ 0 non-negativity condition
X 6= 0 non-zero condition
¬ϕ(X) property condition

(1)

In practice, the procedure is very efficient, but often fails
to prove the property. As an example, consider Lamport’s
algorithm. The negation of the fairness property for the first
process yields

(s1 ∨ s2 ∨ s3 ∨ s4) ∧ (t1 ∨ t2 ∨ t3 ∨ t4 ∨ t5 ∨ t6 ∨ t7) ∧ ¬s2
which corresponds to runs of the system where both processes
are executed infinitely often, but where the first process never
enters the critical section. However, X = {s3, t5} is a
solution to the constraints (1). The solution corresponds to
the processes being stuck in the locations p2 and q4 while
executing the skip commands. For this reason, in the next
section we revisit an idea of [15] which leads to a more precise
set of constraints.

IV. REFINING T-SURINVARIANTS WITH P-COMPONENTS

The method LIVENESS can be strengthened by discarding
T-surinvariants which are not realizable.

Consider again the net of Fig. 4. Recall that X =
{s1, s2, t1, t3} is a semi-positive T-invariant. We prove that
it is not realizable. Consider the subnet N ′ = (P ′, T ′), where
P ′ = {x, notx} and T ′ = {s2, t2, s3, t3}, shown in Fig. 5.

Inspection of the subnet shows that firing a transition does
not change the total number of tokens in P ′. For example,
firing t2 takes a token from x, but adds a token to notx. So this
number is always equal to 1, and so it makes sense to speak
of “the” token of N ′. Assume now that X is realized by some
infinite sequence σ, i.e., inf (σ) = ‖X‖. Since both s2 and t3
occur infinitely often in σ, there are sequences σ1, σ2, σ3 such
that σ = σ1 s2 σ2 t3σ3, and σ2 ∈ ‖X‖∗. After the occurrence
of s2 the token of N ′ is on x, and before the occurrence of
t3 it is on notx. But σ2 cannot “move” the token from x to
notx, as it does not contain any occurrence of t2 (because
t2 /∈ ‖X‖). So we reach a contradiction, and σ does not exist.

In the rest of the section we show how to automatically
search for proofs of non-realizability like this. We need the
notion of a P-component of a net.

Definition 3 (P-component). A P-component of a net N =
(P, T, F) is a subnet N ′ = (P ′, T ′) such that P ′ 6= ∅ and

|t• ∩ P ′| = |•t ∩ P ′| = 1 for all t ∈ T ′ and T ′ = P ′• ∪ •P ′
(where pre- and post-sets are taken with respect to N).

The subnet of Fig. 5 is a P-component. Note that the number
of tokens in a P-component never changes, i.e., m0(P) =
m(P) for all m0

σ−→ m. Therefore, if initially a P-component
only contains one token, then we know that the token will stay
in the P-component.

Lemma 2. Let X be a T-surinvariant of a Petri net N . If N
has a P-component (P ′, T ′) such that m0(P

′) = 1, and the
subnet (P ′, T ′ ∩ ‖X‖) is not strongly connected, then X is
not realizable.

Proof. (Sketch.) If (P ′, T ′ ∩ ‖X‖) is not strongly connected,
then by the definition of P-component there are two transitions
t1, t2 ∈ T ′ ∩ ‖X‖ such that no path of (P ′, T ′ ∩ ‖X‖) leads
from t1 to t2. So the token of (P ′, T ′) cannot be transported
from the output place of t1 in (P ′, T ′∩‖X‖) to the input place
of t2 in (P ′, T ′ ∩ ‖X‖) by firing transitions of X only. Since
every sequence realizing X must fire both t1 and t2 infinitely
often, no such sequence exists.

Lemma 2 provides a refinement condition. To find such a
refinement, we encode the condition as a conjunction of linear
arithmetic constraints. A pair (P ′, T ′) is the set of places
and transitions of a P-component such that m0(P

′) = 1 iff
it satisfies these constraints:

∀t ∈ T ′ : |t• ∩ P ′| = 1 P ′• ∪ •P ′ = T ′

∀t ∈ T ′ : |•t ∩ P ′| = 1 m0(P
′) = 1

For the strong connectedness condition, we use that a graph
(V,E) is not strongly connected iff there is a partition
V = V1] V2 such that no edge (v, v′) ∈ E satisfies
v ∈ V1, v

′ ∈ V2. In our case, V is the set T ′ ∩ ‖X‖, and
E is the set of pairs (t1, t2) such that some place p ∈ P ′

satisfies (t1, p), (p, t2) ∈ F ′. So (P ′, T ′∩‖X‖) is not strongly
connected iff the following constraints are satisfiable:

T ′ ∩ ‖X‖ = T1] T2 T1 6= ∅
(T •1 ∩ P ′)• ∩ ‖X‖ ⊆ T1 T2 6= ∅

These constraints can be encoded by introducing an array of
variables with range {0, 1} for each set of places or transitions.
For example, the constraint ∀t ∈ T ′ : |t• ∩ P ′| = 1 translates
to the linear arithmetic constraint∧

t∈T

[
T ′(t) = 1 =⇒

∑
p∈t•

P ′(p) = 1

]

where (T ′(t1), . . . , T ′(tn)) is the array of Boolean variables
for the set T ′.

If the constraints above are satisfiable for a given T-
surinvariant X , then X is not realizable. We can exclude X
(and any other T-surinvariant whose support has the same
intersection with the P-component as ‖X‖) by adding the
constraint:

s3

t3

q4

t4

t7

q1

t1

t5

bit2

(a) P-component (P ′, T ′)

s3 q4

q1

t5

bit2

(b) Subnet (P ′, T ′ ∩ ‖X‖)

Fig. 6. P-component and subnet of the Petri net for Lamport’s algorithm.

δ ::=

[∨
t∈T1

t

]
∧

[∨
t∈T2

t

]
=⇒

∨
t∈T ′\‖X‖

t (2)

to the set of constraints (1). We can iterate the process,
until either the constraints are unsatisfiable, which means
successfully proving the property, or no further P-components
can be found to discard a T-surinvariant, which means failure.

For example, for Lamport’s algorithm and the fairness
property for the first process, the constraints (1) have
the solution X = {s3, t5}. However, since (P ′, T ′) =
({bit2, q1, q4}, {s3, t1, t3, t4, t5, t7}) is a P-component and
T1 = {s3}, T2 = {t5} satisfy the constraints above, we get
that X is not realizable. The P-component (P ′, T ′) and the
subnet (P ′, T ′∩‖X‖) are shown in Fig. 6. We can immediately
see that the token cannot be transported from the output place
of s3 to the input place of t5.

We add the refinement constraint

s3 ∧ t5 =⇒ t1 ∨ t3 ∨ t4 ∨ t7

to the set (1) and check again for satisfiability. The
new set is still satisfiable with the solution X =
{s3, t1, t1, t2, t3, t4, t5, t6, t7}. In a second refinement step we
find a P-component with {nbit1, p2, p3} as set of places, and
add the refinement constraint

s3 ∧ (t4 ∨ t6) =⇒ s1 ∨ s2 ∨ s4,

after which the constraints (1) are unsatisfiable, and we
conclude that the fairness property for the first process holds.

For the second example (Fig. 3 and 4), we considered
the fair termination property ϕ = ¬(s1 ∧ t1). After adding
¬ϕ = s1 ∧ t1 to the constraints (1), we obtain a solution
X = {s1, s2, t1, t3}. With the P-component (P ′, T ′) =
({x, notx}, {s2, s3, t2, t3}) and the partition T1 = {s2} and
T2 = {t3}, we can discard this T-invariant as unrealizable and
obtain the refinement constraint

s2 ∧ t3 =⇒ s3 ∨ t2,

after which the constraints (1) are unsatisfiable and we can
prove fair termination.

p1

p2

p3

p4

t1

t2

t3

t4

(a) Net without P-components

p1

p2

p3 p4t1

t2

t3

(b) Net without unmarked traps

Fig. 7. Terminating Petri nets for which refinement is insufficient.

V. REFINING T-SURINVARIANTS WITH TRAPS

For some Petri nets, refinement with P-components is not
sufficient for discarding unrealizable T-surinvariants. For ex-
ample, we cannot prove the properties for the leader election
algorithm by Dolev, Klawe and Rodeh [18] or the mutual
exclusion algorithm by Szymanski [19]. These nets are too big
to give as an example, but consider instead the net in Fig. 7a,
which is similar to a subnet of the net for the leader election
algorithm. The net has no infinite occurrence sequences and
we would like to prove termination. The multiset X = {t2, t3}
is a T-surinvariant, but the net has no P-components, so we
cannot refine the constraints. To solve this problem we develop
a refinement technique based on traps.

Definition 4 (Trap). A trap is a set of places S ⊆ P such that
S• ⊆ •S.

It follows immediately from the definition that marked traps
stay marked: if a trap S is marked at some marking m, i.e.
m(S) > 0, then it is also marked at all markings m′ reachable
from m, because every transition taking tokens from S also
adds at least one token to S.

Given a T-surinvariant X , we consider the subnet (P ′, T ′) =
(‖X‖•, ‖X‖). In the example of Fig. 7a, (P ′, T ′) is obtained
by removing transitions t1 and t4, together with their input and
output arcs. Assume ‖X‖ is realized by an infinite occurrence
sequence σ. Then there are sequences σ′, σ′′ such that σ =
σ′σ′′ and σ′′ ∈ ‖X‖ω . Since every place P ′ has an input
transition in ‖X‖, every place of P ′ gets marked during the
execution of σ′′, and therefore every trap of (P ′, T ′) becomes
eventually marked. So we have the following lemma:

Lemma 3. Let N = (P, T, F,m0) be a net and let ‖X‖ be
a realizable T-surinvariant. Then some marking m reachable
from m0 in N marks every trap of the subnet (P ′, T ′) =
(‖X‖•, ‖X‖).

By this lemma, if we show that no reachable marking marks
every trap of (P ′, T ′), then X is unrealizable. We use an
iterative approach. Given a set of traps Q, using the technique
of [11] we can construct a set of constraints satisfied by
every reachable marking that marks every trap of Q.1 If the
constraints are satisfiable, then we extract from the solution a

1The constraints express that a solution m satisfies the marking equation
and that m(S) > 0 for every trap S ∈ Q.

marking m that marks all traps in Q. Since m may not mark
all traps, we search for a new trap S /∈ Q not marked at m. If
we find such S, we set Q = Q∪{S} and iterate, otherwise we
give up. If the constraints are unsatisfiable, then no reachable
marking marks all traps in Q, which implies that X is not
realizable. We can then add a new constraint excluding any
solution with the same support as X . However, we can do
better, and add a stronger constraint. Since we have shown
that no infinite occurrence sequence σ can reach a marking that
simultaneously marks all traps of Q, we choose a constraint
expressing that if inf (σ) contains transitions marking all traps
of (P ′, T ′), then it must also contain at least one transition that
empties a trap of (P ′, T ′). (Of course, such a transition cannot
belong to T ′, it must be a transition of T \ T ′.)

δ ::=
∧
S∈Q

[∨
t∈•S

t

]
=⇒

∨
S∈Q

 ∨
t∈S•\•S

t

 (3)

For example, for the Petri net in Fig. 7a, the method
LIVENESS returns X = {t2, t3} as a T-surinvariant. The
corresponding subnet is (P ′, T ′) = ({p1, p2, p3, p4}, {t2, t3}).
Initially, for Q = ∅, we can take the initial marking m0. In m0,
the trap S1 = {p1} of (P ′, T ′) is unmarked. We search for a
marking m satisfying the marking equation and m(p1) ≥ 1,
and obtain as solution m1 = (1, 0, 1, 0). At this marking the
trap S2 = {p4} is unmarked. So we search for a marking m
satisfying the marking equation, m(p1) ≥ 1 and m(p4) ≥ 1,
and obtain as solution m2 = (1, 0, 0, 1). At this marking the
trap S3 = {p2, p3} is unmarked. We search for a marking
m satisfying the marking equation, m(p1) ≥ 1, m(p4) ≥ 1,
and m(p2) +m(p3) ≥ 1, and obtain that the constraints are
unsatisfiable. So we generate the refinement constraint

(t1 ∨ t2) ∧ (t3 ∨ t4) ∧ (t2 ∨ t3) =⇒ t1 ∨ t4,

which excludes {t2, t3}. In fact, the additional constraint turns
out to exclude not only {t2, t3}, but all T-surinvariants, which
proves termination of the Petri net.

The refinement with traps is a generalization of the refine-
ment with P-components. For a T-surinvariant X , assume there
is refinement with a P-component (P ′, T ′) and a partition
T1]T2 = T ′∩‖X‖. In the subnet (‖X‖•, ‖X‖), S1 = P ′∩T •1
and S2 = P ′ ∩ T •2 are two different traps, and as the P-
component has only one token, we can show with the marking
equation that S1 and S2 cannot be marked at the same time.

Generally, refinement with P-components requires fewer
calls to the SMT solver, and is therefore more efficient. In
our experiments it is also sufficient for most cases, and if it
fails, refinement with traps can be applied afterwards. So we
always start with a refinement with P-components, and apply
then a refinement with traps if necessary.

Even with both refinements, the method is still incomplete.
Consider the Petri net in Fig. 7b, which appears in a Petri
net model of the drinking philosopher’s problem [20]. The
net is terminating, but X = {t1, t1, t2, t3} is a surinvariant
(observe that X is a genuine multiset with two copies of t1).

The subnet corresponding to X is the complete net, and every
trap is initially marked, so no refinement can be found.

If the property does not hold, our method fails and returns
a surinvariant that cannot be excluded by our refinements. For
example, for Lamport’s algorithm, the fairness property for the
second process is not satisfied, where the negation ¬ϕ is:

(s1 ∨ s2 ∨ s3 ∨ s4) ∧ (t1 ∨ t2 ∨ t3 ∨ t4 ∨ t5 ∨ t6 ∨ t7) ∧ ¬t6.

After two refinement steps, our method returns the T-
surinvariant X = {s1, s2, s3, s4, t1, t2, t3, t4, t5}, which satis-
fies ¬ϕ and cannot be further refined. In this case we can use
guided state-space exploration [21] to try to identify permu-
tations of X that are actual repeatable occurrence sequences.
In this case, σ = s1t1s3t2t3s2t5s4t4 is indeed a matching
occurrence sequence which can be repeated infinitely and
violates the property.

VI. EXPERIMENTAL EVALUATION

We extended our tool Petrinizer [11], implemented on top
of the SMT solver Z3 [22], with the method LIVENESS.
The method can be used without refinement, with only P-
component or trap refinement, or with P-component refine-
ment followed by trap refinement. In addition, the refinement
structures can be minimized.

For our evaluation, we had three goals. First, we wanted
to measure the success rates on a large number of case
studies. The second goal was to investigate the usefulness and
necessity of P-components, traps and minimization of them.
As a third goal, we wanted to measure the performance of the
method and compare it with the model checker SPIN2 [23].

A. Benchmarks

For the evaluation, we used five different benchmark suites
from various sources. The first two suites are workflow nets
coming from business processes [24]. One is a collection of
SAP reference models [25] and the other consists of IBM
business process models [26]. We examined the nets for
termination. In total, these suites contain 1976 models, out
of which 1836 are terminating.

The third suite contains 50 examples that come from the
analysis of Erlang programs [5], found on the website of the
Soter tool3. Out of these, 33 are terminating.

For the fourth suite, we used classic asynchronous programs
that can be scaled in the number of processes. These include a
leader election algorithm [18], a snapshot algorithm [27] and
three mutual exclusion algorithms [16], [19], [28]. Each of the
5 algorithms is scaled from n = 2 to 6 processes, resulting in
25 examples. For the former two distributed algorithms, the
property is repeated liveness, i.e., infinitely often electing a
leader or taking a snapshot infinitely often, while for the latter
three mutual exclusion algorithms it is non-starvation for the
first process. These properties all contain a fairness assumption
for the scheduler, and they hold for all examples.

2http://spinroot.com/
3http://mjolnir.cs.ox.ac.uk/soter/

TABLE I
FAIRLY TERMINATING EXAMPLES WITH RATE OF SUCCESS BY DIFFERENT

REFINEMENT METHODS.

Benchmark No ref. Ref. w/P-co. Ref. w/traps Terminating

IBM 1263 1263 1264 1264
SAP 571 571 572 572
Erlang 27 27 27 33
Asynchronous 0 14 20 25
Literature 0 3 5 5

Total 1861 1878 1888 1899

Finally, as the fifth suite, we collected 5 examples from the
literature on termination and liveness analysis and modeled
them as Petri nets. These are the programs from Fig. 2
in [29], Fig. 3 in [30], Fig. 1(b) in [17] and two variants
of the Windows NT Bluetooth driver from [31]. These are all
terminating programs.

The Petri nets for these benchmarks vary largely in size.
The number of places ranges from 4 to 66950, with a mean
of 116 and a median of 38. The number of transitions ranges
from 3 to 213626, with a mean of 163 and a median of 30.

We try to prove the fairness property of the asynchronous
programs and termination for the examples from the other
benchmark suites. In total, we have 1899 examples where the
property holds.

B. Rate of success on terminating examples

In Table I, the rate of success with different refinement
methods is shown. Even without refinement, we can prove
termination of all but 2 of the SAP and IBM examples, and of
27 of the 33 Erlang examples. However, without refinement
we can prove none of the 30 examples from the other two
suites. Refinement with P-components allows us to prove 14 of
the asynchronous and 3 of the literature examples. Additional
refinement with traps allows us to prove the 2 remaining SAP
and IBM examples, 6 more asynchronous examples, and the
remaining examples from the literature suite. In total, we can
prove termination for 1888 of the 1899 terminating examples,
and at least 80% of the terminating examples of each suite.

C. Usefulness of refinement methods and minimization

Table II presents results on the asynchronous benchmark
suite and refinement with and without minimization. Mini-
mization of the refinement components can result in better
refinement constraints that exclude more T-surinvariants, at
the price of a time overhead, since repeated calls to the
SMT solver are needed until a minimal component is found.
The default method, R1, is refinement with P-components
and traps without any minimization. Refinement method R2

minimizes P-components (P ′, T ′) by |P ′| and traps S by |S|.
Other criteria were also tested, but there was no optimal one
working for all benchmarks. For each method, the number of
P-components |R|, number of trap refinements |Q| and total
execution time in seconds for proving the property are given.

We observe cases where we need refinement only with P-
components (Snapshot), only with traps (Leader election) or

TABLE II
COMPARISON OF REFINEMENT WITH AND WITHOUT MINIMIZATION AND
RUNTIME COMPARISON WITH SPIN. FOR AN EXECUTION, TO DENOTES
EXCEEDING THE TIME LIMIT AND MO EXCEEDING THE MEMORY LIMIT.

Refinement R1 Ref. w/ min. R2 SPIN
Benchmark n |R| |Q| T (s) |R| |Q| T (s) T (s)

Leader election
by Dolev,
Klawe and
Rodeh [18]

2 0 4 2.53 0 4 2.30 0.69
3 0 6 8.45 0 6 9.03 0.74
4 0 8 35.5 0 8 38.4 15.7
5 0 13 206 0 10 154 MO
6 0 17 1104 0 12 728 MO

Snapshot
algorithm by
Bougé [27]

2 2 0 0.35 2 0 0.30 0.31
3 3 0 0.50 3 0 0.81 0.72
4 4 0 0.60 4 0 0.91 10.3
5 5 0 0.73 5 0 1.41 218
6 6 0 1.82 6 0 1.63 MO

Lamport’s 1-bit
algorithm for
mutual
exclusion [16]

2 2 0 0.50 3 0 0.43 0.69
3 6 0 1.26 6 0 1.63 0.69
4 12 0 2.83 13 0 5.50 0.92
5 27 0 9.34 18 0 11.3 10.4
6 26 0 13.4 23 0 20.6 MO

Peterson’s
mutual
exclusion
algorithm [28]

2 1 0 0.37 1 0 0.41 0.69
3 13 0 6.57 7 0 8.55 0.71
4 21 0 65.9 18 0 92.5 1.16
5 285 0 2289 36 0 911 43.5
6 - - TO - - TO MO

Szymanski’s
mutual
exclusion
algorithm [19]

2 21 6 10.9 26 6 17.6 0.70
3

Property cannot be proven with
refinement for n ≥ 3.

0.80
4 5.83
5 347
6 MO

with both (Szymanski at n = 2). For Szymanski at n ≥ 3 we
cannot prove the property even with both refinement methods.

Minimization with method R2 saves many refinement steps
for Peterson and a few for Lamport and Leader election,
while for Szymanski the number of steps increases. The time
overhead when no steps are saved is not very large (up to 2×).

Our method produces a certificate for fair termination
consisting of the P-components R and traps Q. One can
use independent methods to check that R and Q are indeed
P-components and traps, and that the constraints (1) are
unsatisfiable. The size of each P-component and trap is limited
by the size of the net. The size of the whole certificate depends
on the number of refinement steps, however it is usually much
more compact than the whole state space.

D. Performance

All experiments were performed on the same machine,
equipped with a Intel Core i7-4810MQ CPU at 2.8 GHz and
16 GB of memory, running Linux 3.18.6 in 64-bit mode.
Execution time was limited to 2 hours and memory to 16 GB.

Table II shows the execution times of Petrinizer for the
asynchronous benchmark suite and a comparison with SPIN.
SPIN was used with a fairness strategy enforced and partial
order reduction. Only for the snapshot algorithm, partial order
reduction was turned off, as it is not supported together with
fairness and the rendezvous operations used in the algorithm.
For small examples, SPIN is usually faster. However, as n

10−2
10−1
100
101
102
103
104

100 101 102 103 104 105

time limit
E

xe
cu

tio
n

tim
e

(s
)

Positive

10−2
10−1
100
101
102
103
104

100 101 102 103 104 105

time limit

E
xe

cu
tio

n
tim

e
(s

)

Number of places

Negative

Fig. 8. Execution time in dependence on the number of places for the
examples from the benchmark suites SAP, IBM, Erlang and Literature,
depending on whether Petrinizer succeeds in proving termination.

grows to 5 or 6, SPIN quickly reaches the memory limit. Here,
Petrinizer outperforms SPIN significantly on the examples
Leader election, Snapshot and Lamport.

For the other four benchmark suites, Fig. 8 shows the
performance of Petrinizer. For the positive examples (i.e.,
those where we can prove the property), we can prove all but
one of the 1868 examples in under 3 seconds. The outlier is
from the SAP suite, for which we need 320 refinement steps
and 8 minutes. Even the largest positive example from the
Erlang suite with 4014 places only needs 1.86 seconds. For the
negative examples, Petrinizer performs worse, usually because
it performs more refinement steps. However, it terminates in
under 3 seconds for all nets with up to 1000 places. Only
in one case we reach the time limit of 2 hours (our largest
example with 66950 places).

We only need more than 3 refinement steps in one case (an
outlier with 320 steps). The number of steps is not correlated
to the net size.

VII. CONCLUSION

Transition invariants and P-components are classical anal-
ysis techniques for Petri nets. We have demonstrated that,
combined with a state-of-the-art SMT solver, these techniques
are very effective in proving fair termination for a large
number of common benchmark examples. We have further
developed a novel technique based on traps, which allows us
to reach a high degree of completeness on these benchmarks.
The constraint systems produced by our tool can be used as a
certificate of fair termination.

ACKNOWLEDGMENTS

We thank Filip Niksic, Corneliu Popeea, and Karsten Wolf
for kindly providing examples for our experimental evaluation.

REFERENCES

[1] A. Kaiser, D. Kroening, and T. Wahl, “Dynamic cutoff detection in
parameterized concurrent programs,” in CAV, 2010, pp. 645–659.

[2] P. Ganty and R. Majumdar, “Algorithmic verification of asynchronous
programs,” ACM Trans. Program. Lang. Syst., vol. 34, no. 1, p. 6, 2012.

[3] A. Bouajjani and M. Emmi, “Bounded phase analysis of message-
passing programs,” in TACAS, 2012, pp. 451–465.

[4] A. Kaiser, D. Kroening, and T. Wahl, “Efficient coverability analysis by
proof minimization,” in CONCUR, 2012, pp. 500–515.

[5] E. D’Osualdo, J. Kochems, and C.-H. L. Ong, “Automatic verification
of Erlang-style concurrency,” in SAS, 2013, pp. 454–476.

[6] G. Geeraerts, J.-F. Raskin, and L. V. Begin, “Expand, enlarge and check:
New algorithms for the coverability problem of WSTS,” J. Comput. Syst.
Sci., vol. 72, no. 1, pp. 180–203, 2006.

[7] P. Ganty, J.-F. Raskin, and L. Van Begin, “From many places to
few: Automatic abstraction refinement for Petri nets,” Fundam. Inform.,
vol. 88, no. 3, pp. 275–305, 2008.

[8] A. Valmari and H. Hansen, “Old and new algorithms for minimal
coverability sets,” in Petri Nets, 2012, pp. 208–227.

[9] J. Kloos, R. Majumdar, F. Niksic, and R. Piskac, “Incremental, inductive
coverability,” in CAV, 2013, pp. 158–173.

[10] C. Rackoff, “The covering and boundedness problems for vector addition
systems,” Theor. Comput. Sci., vol. 6, pp. 223–231, 1978.

[11] J. Esparza, R. Ledesma-Garza, R. Majumdar, P. Meyer, and F. Niksic,
“An SMT-based approach to coverability analysis,” in CAV, 2014, pp.
603–619.

[12] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[13] J. Desel and J. Esparza, Free Choice Petri Nets. Cambridge University
Press, 1995.

[14] W. Reisig, Understanding Petri Nets - Modeling Techniques, Analysis
Methods, Case Studies. Springer, 2013.

[15] J. Esparza and S. Melzer, “Model checking LTL using constraint
programming,” in ICATPN, 1997, pp. 1–20.

[16] L. Lamport, “The mutual exclusion problem - part II: Statement and
solutions,” J. ACM, vol. 33, no. 2, pp. 327–348, 1986.

[17] P. Ganty, R. Majumdar, and A. Rybalchenko, “Verifying liveness for
asynchronous programs,” in POPL, 2009, pp. 102–113.

[18] D. Dolev, M. M. Klawe, and M. Rodeh, “An o(n log n) unidirectional
distributed algorithm for extrema finding in a circle,” J. Algorithms,
vol. 3, no. 3, pp. 245–260, 1982.

[19] B. K. Szymanski, “A simple solution to lamport’s concurrent program-
ming problem with linear wait,” in ICS, 1988, pp. 621–626.

[20] K. M. Chandy and J. Misra, “The drinking philosopher’s problem,” ACM
Trans. Program. Lang. Syst., vol. 6, no. 4, pp. 632–646, 1984.

[21] H. Wimmel and K. Wolf, “Applying CEGAR to the Petri net state
equation,” Logical Methods in Computer Science, vol. 8, no. 3, 2012.

[22] L. M. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in TACAS,
2008, pp. 337–340.

[23] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Software Eng.,
vol. 23, no. 5, pp. 279–295, 1997.

[24] W. M. P. van der Aalst, “Challenges in business process management:
Verification of business processing using petri nets.” Bulletin of the
EATCS, vol. 80, pp. 174–199, 2003.

[25] B. F. van Dongen, M. H. Jansen-Vullers, H. M. W. Verbeek, and W. M. P.
van der Aalst, “Verification of the SAP reference models using EPC
reduction, state-space analysis, and invariants,” Computers in Industry,
vol. 58, no. 6, pp. 578–601, 2007.

[26] D. Fahland, C. Favre, B. Jobstmann, J. Koehler, N. Lohmann, H. Völzer,
and K. Wolf, “Instantaneous soundness checking of industrial business
process models,” in BPM, 2009, pp. 278–293.

[27] L. Bougé, “Repeated snapshots in distributed systems with synchronous
communications and their implementation in CSP,” Theor. Comput. Sci.,
vol. 49, pp. 145–169, 1987.

[28] G. L. Peterson, “Myths about the mutual exclusion problem,” Inf.
Process. Lett., vol. 12, no. 3, pp. 115–116, 1981.

[29] B. Cook, A. Podelski, and A. Rybalchenko, “Proving thread termina-
tion,” in PLDI, 2007, pp. 320–330.

[30] A. Podelski and A. Rybalchenko, “Transition invariants,” in LICS, 2004,
pp. 32–41.

[31] S. Qadeer and D. Wu, “KISS: keep it simple and sequential,” in PLDI,
2004, pp. 14–24.

