An SMT-Based Approach to Coverability Analysis

Javier Esparza¹, Ruslán Ledesma-Garza¹, Rupak Majumdar², Philipp Meyer¹, **Filip Niksic**²

> ¹ Technische Universität München ² MPI-SWS

Petri net coverability is important, but difficult

- Many verification problems reduce to Petri net coverability problem
- Petri net coverability is **EXPSPACE-complete**
- Sophisticated tools and algorithms:

MIST — Expand-enlarge-check [GRB '06]

BFC — Minimal uncoverability proof [KKW '12]

IIC — Incremental, inductive coverability [KMNP '13]

MIST, BFC and IIC don't scale well

Examples proved safe

Reducing coverability to feasibility of linear constraints

Method LinCon:

- Based on marking equation [Murata '77]
 Incomplete
- Strengthened with traps [EM '00]
 Traps essentially Boolean constraints
 Still incomplete

Use **SMT** for linear and Boolean constraints. But **LinCon is incomplete.**

Does it make sense to use it?

Yes! For the right class of examples, LinCon is "quite complete"

Examples proved safe

Contributions

Main contribution:

 Extensive experimental evaluation showing that LinCon works well

Also:

Using duality of linear programming to derive succinct inductive invariants

Contributions

Main contribution:

 Extensive experimental evaluation showing that LinCon works well

Also:

Using duality of linear programming to derive succinct inductive invariants

In this talk

Petri nets and LinCon

Experiments

In this talk

Petri nets and LinCon

Experiments

initial marking (0, 1, 0)

initial marking (0, 1, 0)

initial marking (0, 1, 0) $\downarrow \dots + (1, 0, 0)$ (1, 1, 0)

initial marking (0, 1, 0) $\downarrow \dots + (1, 0, 0)$ (1, 1, 0)

initial marking (0, 1, 0) $\downarrow \dots + (1, 0, 0)$ (1, 1, 0) $\downarrow \dots + (-1, 0, 1)$ (0, 1, 1)

initial marking (0, 1, 0) $\downarrow \dots + (1, 0, 0)$ (1, 1, 0) $\downarrow \dots + (-1, 0, 1)$ (0, 1, 1)

reachable markings

Reachable markings satisfy marking equation

Ignore the order of transitions:

marking equation [Murata '77]

$$y \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} s \\ t \\ r \end{bmatrix}$$

Reachable markings satisfy marking equation

Ignore the order of transitions:

• marking equation [Murata '77]

$$M = m_0 + CX$$

marking initial transition vector marking vector incidence matrix

У

S

Coverability problem

Given a Petri net with:

- initial marking mo
- target marking mt

Is there a reachable marking m_r that covers m_t ?

Coverability problem

Given a Petri net with:

- initial marking mo
- target marking mt

Is there a reachable marking m_r that covers m_t ?

If mt is not coverable, Petri net is safe.

Adding coverability constraint to marking equation yields basic LinCon

$$M = m_0 + CX$$
$$M \ge m_t$$
$$X \ge 0$$

If the constraints are not feasible, the Petri net is safe.

Trap — set of places such that every transition that consumes tokens from it also puts tokens into it.

Trap — set of places such that every transition that consumes tokens from it also puts tokens into it.

Trap — set of places such that every transition that consumes tokens from it also puts tokens into it.

If a trap is marked, it stays marked.

Trap — set of places such that every transition that consumes tokens from it also puts tokens into it.

If a trap is marked, it stays marked.

$$x + y \ge 1$$

 $M = m_0 + CX$ $M \ge m_t$ $X \ge 0$

In this talk

Petri nets and LinCon

Experiments

In this talk

Petri nets and LinCon

Experiments

The origin of examples

- MIST <u>https://github.com/pierreganty/mist</u> Examples from the literature
- BFC <u>http://www.cprover.org/bfc/</u> Examples from verification of concurrent C programs
- Provenance verification for message-passing programs [MMW '13]

Examples modeling a medical system and a bug-tracking system

• SOTER — <u>http://mjolnir.cs.ox.ac.uk/soter/</u> [DKO '13]

Examples from verification of Erlang programs Contains a Petri net with **66,950 places** and **213,625 transitions** Main point here: LinCon works well even without traps

LinCon is "quite complete"

Examples proved safe

LinCon without traps is "quite complete"

Examples proved safe

If LinCon were combined with other tools

Examples proved safe

BFC BFC+LinCon Together Together+LinCon

Summary

- We've revisited a linear constraint approach to Petri net coverability
- LinCon is **incomplete**, but **useful**
 - ... on its own
 - ... as a cheap preprocessing step in other tools