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Petri nets — Exercise Sheet 6

Exercise 6.1

(a) Prove: If (N,M0) is a live S-system and M ′0 ≥M0, then (N,M ′0) is also live.

(b) Prove: If (N,M0) is a live T-system and M ′0 ≥M0, then (N,M ′0) is also live.

(c) Give an S-system (N ,M0) that is 1-bounded and such that |M0| > 1.

(d) Give a strongly connected T -system (N ,M0) which is not live and such that M0 6= 0.

(e) Let (N ,M0) be a T -system. Show that if (N ,M0) is strongly connected and live, then it is bounded.

(f) Reprove (e), but this time without assuming that (N ,M0) is live.

Exercise 6.2

(a) Show that the problem of determining whether a T -system is not live belongs to NP.

(b) Give a polynomial time algorithm for deciding liveness of T -systems.

(c) Test whether the following T -system is live by using your previous algorithm:

p1 p2 p3

p4p5p6

p7p8
p9

Exercise 6.3

For each n ∈ N, give a 1-bounded T-system (N,M0) with n transitions and a reachable marking M such that

the minimal occurrence sequence σ with M0
σ−→M has a length of n(n−1)

2 .

Hint : First try find a Petri net and a marking for n = 3, where the minimal sequence has length 3. For this a
net with 4 places suffices. Then try to generalize your solution.
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Exercise 6.4

Consider the following free-choice system (N ,M0):

p0

p1p2

p3 p4

t0

t1t2

t3

t4

t5

(a) Give all minimal proper siphons of (N ,M0).

(b) Use (a) to say whether (N ,M0) is live or not.

Exercise 6.5

(a) Let N = (P, T, F ) be a Petri net, and let s, t ∈ T be such that •s ∩ t• = ∅. Show that if M
ts−→M ′, then

M
st−→M ′.

(b) Let N = (P, T, F ) be a Petri net which is not strongly connected. Show that P ∪ T can be partitioned
into two disjoint sets U, V ⊆ P ∪ T such that F ∩ (V × U) = ∅.

(c) Let U and V be a partition as in (b). Show that if M
σ−→ M ′, then there exist σU ∈ (T ∩ U)∗ and

σV ∈ (T ∩ V )∗ such that σ = σUσV and M
σUσV−−−−→M ′.

(d) Let (N ,M0) be live and bounded. Use (a), (b) and (c) to show that N is strongly connected.
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Solution 6.1

(a) By the Liveness Theorem for S-systems, (N,M0) is live iff N is strongly connected and M0(S) > 0, and
as M ′0(S) ≥M0(S) > 0, (N,M ′0) is also live.

(b) By the Liveness Theorem for T-systems, (N,M0) is live iff M0(γ) > 0 for every circuit γ, and as M ′0(γ) ≥
M0(γ) > 0, (N,M ′0) is also live.

(c)

(d)

(e) Let N = (P, T, F ). Let b = |M0|. We show that every place is b-bounded. Let p ∈ P . Since N is strongly
connected, p lies on some circuit γ. Note that M0(γ) ≤ b and that (N ,M0) is live. Therefore, by Theorem
5.2.4, p is b-bounded.

(f) Let N = (P, T, F ). Let b = |M0|. We show that every place is b-bounded. Let p ∈ P . Since N is strongly
connected, p lies on some circuit γ. By Proposition 5.2.2, for every reachable marking M , M(γ) = M0(γ).
So there can be no reachable marking M in which M(p) > b and p is b-bounded.

Solution 6.2

(a) By Theorem 5.2.3, (N ,M0) is not live if and only if M0(γ) = 0 for some circuit γ. Note that every cycle
γ contains a simple cycle γ′. Moreover, if M0(γ) = 0, then M0(γ′) = 0. This implies that,

(N ,M0) is not live ⇐⇒ M0(γ) = 0 for some simple circuit γ.

Therefore, to test whether (N ,M0) is not live, it suffices to test a circuit γ of size at most |P ∪ T | and
check whether M0(γ) = 0.

(b) Since a graph may contain exponentially many simple cycles, we cannot directly use the approach of (a).
Instead, we construct the subnet N ′ obtained from N by removing all places containing tokens. We then
perform depth-first search to test whether N ′ contains a cycle. This procedure can be implemented as
follows:
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Input: T -system (N ,M0) where N = (P, T, F )
Output: (N ,M0) live?
while ∃p ∈ P such that ¬visited(p) and M0(p) = 0 do

if has-cycle(p) then return false
return true

has-cycle(p):
visited(p)← true
onstack(p)← true

for q ∈ (p•)• such that M0(q) = 0 do
if onstack(q) then

return true
else if ¬visited(q) then

if has-cycle(q) then return true

onstack(p)← false
return false

(c) We obtain the following subnet:

p1 p2 p3

p4p5

p8
p9

A depth-first search shows that this subnet contains no cycle. Therefore, the system is live.

Solution 6.3

For n = 3, we can take the following net with the marking M = (0, 0, 1, 1). To reach this marking, we need to
fire t1 and t2 to mark s3 and s4. However, firing t2 undoes the effect of t1 on s3, so we need to fire t1 twice.
The minimal sequence is then σ = t1t2t1 of length 3.

s1

s3

s2

s4

t1 t2 t3

This construction can be repeated for arbitrary n, as shown in the following sketch of a Petri net. To reach the
marking M with M(si,1) = 0 and M(si,2) = 1 for all 1 ≤ i ≤ n− 1 with a minimal sequence, we need to fire

σ = t1t2 . . . tn−1 t1t2 . . . tn−2 . . . t1, which has a length of
∑n−1
i=1 i = n(n−1)

2 .
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s1,1

s1,2

s2,1

s2,2

. . .

sn−1,1

sn−1,2

t1 t2 t3 tn−1 tn

Solution 6.4

(a) We claim that the system has two minimal proper siphons: {p0} and {p2, p3}.

Let us show the claim. By inspecting •p and p• for every place p, we find a single siphon of size one: {p0}.
Moreover, we have •{p2, p3} = {t2, t3, t4} = {p2, p3}•. Now, note that t0 ∈ •p1 and •t0 = {p0}. Therefore,
any siphon containing p1 must also contain p0. Similarly, any siphon containing p4 must also contain p0.
Thus, no minimal siphon contains p1 or p4, and we are done.

(b) The system is not live. By Commoner’s Theorem, the system is live if and only if every minimal proper
siphon contains a trap marked at M0. The minimal siphon {p2, p3} is also a trap and it is marked at M0.
However, the minimal siphon {p0} is not a trap and hence it does not contain a marked trap.

Solution 6.5

(a) Let X ∈ NP be such that M
t−→ X

s−→ M ′. For the sake of contradiction, suppose s is not enabled in M .
There exists p ∈ P such that p ∈ •s and M(p) = 0. Since s is enabled in X, we have X(p) > 0. Therefore,
it must be the case that p ∈ t•. This implies that p ∈ •s ∩ t• which is a contradiction. Thus, s is enabled
in M and M

s−→ Y for some marking Y ∈ NP .

Let us now show that t is enabled in Y . Let q ∈ •t. We must show that Y (q) > 0.

Case 1: q 6∈ •s. If q 6∈ •s, then Y (q) ≥M(q) > 0.

Case 2: q ∈ •s. If q ∈ •s, then

Y (q) = M(q)− 1. (1)

Since s is enabled in X, we have X(q) > 0. Moreover, q 6∈ t• since •s ∩ t• = ∅. This implies that
M(q) > X(q), and hence M(q) ≥ 2. By (1), we derive Y (q) ≥ 1.

(b) Since N is not strongly connected, there exist u, v ∈ P ∪ T such that there is no path from v to u. Let

U = {x ∈ P ∪ T : there is a path from x to u},
V = (P ∪ T ) \ U.

Note that both sets are non empty since u ∈ U and v ∈ V . Moreover, U ∩ V = ∅ and U ∪ V = P ∪ T by
definition.

Let us show that F ∩ (V × U) = ∅. Assume there exists e ∈ F ∩ (V × U). There exist x ∈ U and y ∈ V
such that (y, x) ∈ F . Since x ∈ U , there exists a path σ from x to u. Therefore, (y, x)σ is a path from y
to u. This implies that y ∈ U which is a contradiction.

(c) Let U ′ = T ∩ U and V ′ = T ∩ V . Let us first show that •(U ′) ∩ (V ′)• = ∅. For the sake of contradiction,
assume there exist s ∈ V ′, t ∈ U ′ and q ∈ P such that q ∈ s• and q ∈ •t. We have (s, q) ∈ F and
(q, t) ∈ F . If q ∈ U , then by (b) and (s, q) ∈ F , we obtain a contradiction. Similarly, if q ∈ V , then
(q, t) ∈ F yields a contradiction.

We now prove the claim by induction of |σ|. If |σ| = 0, it follows trivially. Assume that |σ| > 0 and that
the claim holds for firing sequences of length |σ| − 1. There exist σ′ ∈ T ∗, s ∈ T and Y ∈ NP such that
σ = σ′s and

M
σ′

−→ X
s−→M ′.
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By induction hypothesis, there exists πU ∈ (U ′)∗ and πV ∈ (V ′)∗ such that M
πUπV−−−−→ X. If s ∈ V ′

or |πV | = 0, then we are done. Otherwise, let π′V ∈ (V ′)∗ and t ∈ V ′ be such that πV = π′V t. Since
•(U ′) ∩ (V ′)• = ∅, we can apply (a) and obtain

M
πUπ

′
V s−−−−→ Y

t−→M ′

for some Y ∈ NP . By induction hypothesis, there exist γU ∈ (U ′)∗ and γV ∈ (V ′)∗ such that

M
γUγV−−−→ Y.

Let σU = γU and σV = γV t. We are done since σU ∈ (U ′)∗, σV ∈ (V ′)∗ and M
σUσV−−−−→M ′.

(d) Let N = (P, T, F ). For the sake of contradiction, assume N is not strongly connected. By (b), there
exists a partition U, V of P ∪ T such that F ∩ (V × U) = ∅. Since N is connected, there exist u ∈ U and
v ∈ V such that (u, v) ∈ F . Let b ∈ N be such that (N ,M0) is b-bounded. Since (N ,M0) is live, there

exist σ ∈ T ∗ and M ∈ NP such that M0
σ−→M and (u, v) is taken b+1 times. By (c), there exist σU ∈ U∗

and σV ∈ V ∗ such that M0
σUσV−−−−→M . Let X ∈ NP be such that M0

σU−−→ X
σV−−→M .

Case 1: u ∈ P , v ∈ T . Since F ∩ (V × U) = ∅, there is no transition of V that puts tokens into places of

U . Note that v decreases the amount of token of u by 1. Since X
σV−−→ M , these two observations imply

that X(u) ≥ b+ 1. As X is reachable from M0, this contradicts (N ,M0) being b-bounded.

Case 2: u ∈ T , v ∈ P . Since F ∩ (V ×U) = ∅, there is no transition of U that consumes tokens from places

of V . Note that u increases the amount of token of u by 1. Since M0
σU−−→ X, these two observations imply

that X(u) ≥ b+ 1. This contradicts (N ,M0) being b-bounded.
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