Petri nets — Exercise Sheet 6

Exercise 6.1

- (a) Prove: If (N, M_0) is a live S-system and $M'_0 \ge M_0$, then (N, M'_0) is also live.
- (b) Prove: If (N, M_0) is a live T-system and $M'_0 \ge M_0$, then (N, M'_0) is also live.
- (c) Give an S-system (\mathcal{N}, M_0) that is 1-bounded and such that $|M_0| > 1$.
- (d) Give a strongly connected T-system (\mathcal{N}, M_0) which is not live and such that $M_0 \neq \mathbf{0}$.
- (e) Let (\mathcal{N}, M_0) be a T-system. Show that if (\mathcal{N}, M_0) is strongly connected and live, then it is bounded.
- (f) Reprove (e), but this time without assuming that (\mathcal{N}, M_0) is live.

Exercise 6.2

- (a) Show that the problem of determining whether a T-system is not live belongs to NP.
- (b) Give a polynomial time algorithm for deciding liveness of T-systems.
- (c) Test whether the following T-system is live by using your previous algorithm:

Exercise 6.3

For each $n \in \mathbb{N}$, give a 1-bounded T-system (N, M_0) with n transitions and a reachable marking M such that the minimal occurrence sequence σ with $M_0 \xrightarrow{\sigma} M$ has a length of $\frac{n(n-1)}{2}$.

Hint: First try find a Petri net and a marking for n = 3, where the minimal sequence has length 3. For this a net with 4 places suffices. Then try to generalize your solution.

Exercise 6.4 Consider the following free-choice system (\mathcal{N}, M_0) :

- (a) Give all minimal proper siphons of (\mathcal{N}, M_0) .
- (b) Use (a) to say whether (\mathcal{N}, M_0) is live or not.