Petri nets - Exercise Sheet 5

Exercise 5.1

Consider the following Petri net (with weights) \mathcal{N} :

(a) Build the incidence matrix of \mathcal{N}.
(b) Let $M_{0}=\left\{p_{1}, p_{1}\right\}$. Try to determine whether

$$
\begin{aligned}
& M_{0} \xrightarrow{*}\left\{p_{1}, p_{1}, p_{1}, p_{4}\right\}, \\
& M_{0} \xrightarrow{\rightarrow}\left\{p_{1}, p_{1}, p_{1}, p_{1}, p_{2}\right\}, \\
& M_{0} \xrightarrow{\rightarrow}\left\{p_{1}, p_{2}, p_{5}\right\},
\end{aligned}
$$

by solving the marking equation.

Exercise 5.2

For the following invariants, check if the net below has such an invariant. If yes, give one such invariant.

1. a semi-positive T-invariant
2. a positive T-invariant

Exercise 5.3

Exhibit counterexamples that disprove the following conjectures:

1. For a Petri net $\left(\mathcal{N}, M_{0}\right)$, an S-invariant I of \mathcal{N} and a marking M, if $I \cdot M_{0}=I \cdot M$, then M is reachable from M_{0}.
2. For a Petri net $\left(\mathcal{N}, M_{0}\right)$ and a place s of \mathcal{N}, if s is bounded, then there is an S-invariant I of \mathcal{N} with $I(s)>0$.

Exercise 5.4

On exercise sheet 1, we saw Lamport's algorithm for mutual exclusion. We used LoLA to show that it ensures mutual exclusion, which however needs state-space exploration. We now want to use invariants and traps to show that this holds. Below is a slightly smaller but equivalent model of Lamport's algorithm as a Petri net.

The goal is to show that there is no reachable marking M such that $M\left(p_{3}\right) \geq 1$ and $M\left(q_{5}\right) \geq 1$.
(a) The net has the following S-invariants I_{1}, \ldots, I_{6}, which form a basis of the space of all S-invariants:

Use these invariants to show that there is a unique marking M where $M \sim M_{0}, M\left(p_{3}\right) \geq 1$ and $M\left(q_{5}\right) \geq 1$.
(b) Use traps to show that the marking M derived in (a) is not reachable from M_{0}. For this, find the largest unmarked trap at M using the algorithm for the largest siphon, adapted to traps.

Exercise 5.5

1. Give a procedure that, given a net \mathcal{N}, constructs a boolean formula φ satisfying the following properties:

- The formula contains variables r_{s} for each place $s \in S$,
- if φ is satisfiable, then \mathcal{N} has a trap,
- and if φ is not satisfiable, then \mathcal{N} has no trap.
- Additionally, if A is a model of φ, then the set given by $R=\left\{s \mid A\left(r_{s}\right)\right\}$ is a trap of \mathcal{N}.

2. Apply your procedure to the Petri net on the left below and give the resulting constraints.
3. Adapt your procedure such that, given two marking M_{0} and M, it adds additional constraints to ensure that any trap R obtained as a solution by the constraints is marked at M_{0} and unmarked at M. The constraints should be satisfiable iff a trap marked at M_{0} and unmarked at M exists.
4. Construct the constraints for the Petri net below with the markings M_{0} and M.
5. Use your constraints and the trap property to show that M is not reachable from M_{0} in the net below.

Solution 5.1

(a)

$$
\boldsymbol{N}=\begin{array}{r|rrrrr}
& t_{1} & t_{2} & t_{3} & t_{4} & t_{5} \\
\hline p_{1} & -1 & 3 & 0 & 0 & 0 \\
p_{2} & 1 & -1 & -1 & 2 & 0 \\
p_{3} & 0 & 0 & 0 & 0 & 2 \\
p_{4} & 0 & -1 & 0 & 1 & -1 \\
p_{5} & 0 & 0 & 1 & -1 & 0
\end{array}
$$

\star This can be verified using APT by using the command java -jar apt.jar matrices pn_4-1.apt.
(b) Let us first write the markings as vectors:

$$
M_{0}=\left(\begin{array}{l}
2 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad M_{1}=\left(\begin{array}{l}
3 \\
0 \\
0 \\
1 \\
0
\end{array}\right), \quad M_{2}=\left(\begin{array}{l}
4 \\
1 \\
0 \\
0 \\
0
\end{array}\right), \quad M_{3}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

We need to solve $M_{i}=M_{0}+\boldsymbol{N} \cdot X$, for each $i \in\{1,2,3\}$, which is equivalent to solving $\boldsymbol{N} \cdot X=M_{i}-M_{0}$. All three systems of equations can be solved simultaneously by using Gaussian elimination:

$$
\left(\begin{array}{rrrrr|rrr}
-1 & 3 & 0 & 0 & 0 & 1 & 2 & -1 \\
1 & -1 & -1 & 2 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{lllll|rrr}
1 & 0 & 0 & 0 & 0 & -1 & 1 & 2 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 / 3 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 4 / 3 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 / 3 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Markings M_{1} and M_{3} are not reachable from M_{0} since their associated (unique) solutions contain respectively negative and non integer values. Since the marking equation for M_{2} has a non negative integer solution, we cannot conclude whether M_{2} can be reached or not. In fact, a closer look at the Petri net shows that it is reachable since $M_{0} \xrightarrow{t_{1} t_{3} t_{4} t_{2}} M_{2}$.

Solution 5.2

A vector J is a T-invariant if $\mathbf{N} \cdot J=0$ or if $\forall s \in S: \sum_{t \in \bullet} J(t)=\sum_{t \in s} \cdot J(t)$ or $J=\boldsymbol{\sigma}$ for some occurrence sequence σ and marking M with $M \xrightarrow{\sigma} M$ (fundamental property of T-invariants). By the second definition, we obtain the following equations for a T-invariant $J=\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)$:

$$
\begin{aligned}
t_{1} & =t_{2} \\
t_{3} & =t_{1}+t_{4} \\
t_{2} & =t_{3} \\
t_{5} & =t_{2} \\
t_{3}+t_{4} & =t_{5}
\end{aligned}
$$

These can be simplified and reduced to following equivalent set of equations:

$$
\begin{aligned}
& t_{1}=t_{2}=t_{3}=t_{5} \\
& t_{4}=0
\end{aligned}
$$

By specifying t_{1} the T-invariant is completely defined. By setting $t_{1}=1$, we obtain the following semi-positive T-invariant:

$$
J=(1,1,1,1,0)
$$

As $t_{4}=0$ for all T-invariants, there can be no positive T-invariant.

Solution 5.3

1. In the following net, we have $I=(0)$ as an S-invariant (the zero vector is an S-invariant for any net), and therefore we have $I \cdot M_{0}=0=I \cdot M$ for any markings M_{0} and M. However the marking $M=(2)$ is not reachable from $M_{0}=(1)$.

2. In the following net, the place s_{1} is bounded. We have $\mathbf{N}=(-1)$ and therefore $I(s 1)=0$ for any S-invariant.

As a more interesting example, take the following Petri net, known from exercise 2.1(c), which is live and bounded.

Any S-invariant I would need to satisfy

$$
\begin{aligned}
& I\left(s_{1}\right)=I\left(s_{2}\right)+I\left(s_{5}\right) \\
& I\left(s_{2}\right)=I\left(s_{1}\right)+I\left(s_{5}\right) \\
& I\left(s_{3}\right)=I\left(s_{4}\right)+I\left(s_{5}\right) \\
& I\left(s_{4}\right)=I\left(s_{3}\right)+I\left(s_{5}\right)
\end{aligned}
$$

and therefore $I\left(s_{5}\right)=0$, so there is no positive S-invariant.

Solution 5.4

(a) Assume $M \sim M_{0}, M\left(p_{3}\right) \geq 1$ and $M\left(q_{5}\right) \geq 1$. We then need to have $I_{k} \cdot M=I_{k} \cdot M_{0}$ for $k \in\{1,2,3,4,5,6\}$. We can then derive

$$
\begin{array}{r}
\frac{I_{1} \cdot M=I_{1} \cdot M_{0}}{\sum_{i=1}^{3} M\left(p_{i}\right)=1} \quad M\left(p_{3}\right) \geq 1 \\
\hline M\left(p_{1}\right)=0, M\left(p_{2}\right)=0, M\left(p_{3}\right)=1
\end{array} \frac{I_{2} \cdot M=I_{2} \cdot M_{0}}{M\left(p_{2}\right)+M\left(p_{3}\right)+M\left(x_{f}\right)=1} \quad \frac{I_{3} \cdot M=I_{3} \cdot M_{0}}{M\left(x_{t}\right)+M\left(x_{f}\right)=1} M^{M\left(x_{f}\right)=0} \quad
$$

and
from which it follows that $M=\left\{p_{3}, x_{t}, q_{5}, y_{t}\right\}$. We have that M agrees with M_{0} on I_{1}, \ldots, I_{6}, and as these are a basis, also on all invariants. Therefore we have $M \sim M_{0}$. This means using only invariants (or the marking equation over the rationals), we can not conclude that M is not reachable from M_{0}.
\star A basis of the space of semi-positive S-invariants of this can be found with APT by using the command java -jar apt.jar invariants lamport_4-4.apt s.
(b) As the invariants in (a) were inconclusive in determining if a marking M with $M\left(p_{3}\right) \geq 1$ and $M\left(q_{5}\right)$ is reachable, we now use traps to show that the M of (a) is not reachable. We want to find a trap R such that $M_{0}(R)>0$ and $M(R)=0$, therefore violating the fundamental property of traps for reachable markings.
It suffices to look at the largest unmarked trap in M, derived with the fixed-point algorithm for siphons from the lecture, adapted to traps by switching pre- and postsets. Initially, we set $R=\{s \in S \mid M(s)=0\}$. We then obtain:

$$
\begin{aligned}
R & =\left\{p_{1}, p_{2}, x_{f}, q_{1}, q_{2}, q_{3}, q_{4}, y_{f}\right\}=S \backslash\left\{p_{3}, x_{t}, q_{5}, y_{t}\right\} \\
\bullet R & =\left\{s_{1}, s_{2}, s_{3}, s_{4}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}\right\}=T \\
R^{\bullet} & =\left\{s_{1}, s_{2}, s_{3}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}=T \backslash\left\{s_{4}, t_{7}\right\}
\end{aligned}
$$

We have $R^{\bullet} \subseteq \bullet R$, so R is already a trap and our solution to the largest unmarked trap at M.
With $M_{0}=\left\{p_{1}, x_{f}, q_{1}, y_{f}\right\}$ we have $M_{0}(R)=4>0$. As $M(R)=0$, by the fundamental property of traps, we then obtain that M is not reachable from M_{0}. We showed in (a) that this M is the only M with $M\left(p_{3}\right) \geq 1$ and $M\left(q_{5}\right) \geq 1$ satisfying $M \sim M_{0}$, and thus also the only M for which the marking equation has a solution. With our trap R it then follows that there is no such M where both $M \sim M_{0}$ and $M(R)>0$ hold, so no such M is reachable. This shows that the algorithm satisfies mutual exclusion.
\star The minimal trap $R^{\prime}=\left\{p_{2}, q_{2}, q_{3}, x_{f}, y_{f}\right\} \subseteq R$ would also be sufficient to show this property. This trap can be found e.g. with APT by using the command java -jar apt.jar traps lamport_4-4.apt.

Solution 5.5

1. Any trap R satisfies $R^{\bullet} \subseteq{ }^{\bullet} R$ and therefore $\forall t \in T: \exists s \in{ }^{\bullet} t: s \in R \Longrightarrow \exists s^{\prime} \in t^{\bullet}: s^{\prime} \in R$. This can be encoded with the following formula, which can be unrolled for a given net N :

$$
\bigwedge_{t \in T}\left(\left(\bigvee_{s \in p r e t} r_{s}\right) \Longrightarrow\left(\bigvee_{s^{\prime} \in \text { postt }} r_{s}^{\prime}\right)\right)
$$

Any assignment satisfying the formula gives rise to a set R which satisfies the trap condition and is therefore a trap.
2. The constraints are as follows:

$$
\begin{aligned}
r_{s_{1}} & \Longrightarrow r_{s_{2}} \vee r_{s_{3}} \\
r_{s_{1}} & \Longrightarrow r_{s_{4}} \vee r_{s_{5}} \\
r_{s_{2}} & \Longrightarrow r_{s_{6}} \\
r_{s_{3}} & \Longrightarrow r_{s_{7}} \\
r_{s_{4}} & \Longrightarrow r_{s_{6}} \\
r_{s_{5}} & \Longrightarrow r_{s_{7}} \\
r_{s_{6}} \vee r_{s_{7}} & \Longrightarrow r_{s_{1}}
\end{aligned}
$$

3. To ensure that the trap is marked at M_{0} and unmarked at M, we can add the following constraint:

$$
\left(\bigvee_{s \in S: M_{0}(s)>0} r_{s}\right) \wedge\left(\bigwedge_{s \in S: M(s)>0} \neg r_{s}\right)
$$

4. The additional constraints are:

$$
r_{s_{1}} \wedge\left(\neg r_{s_{2}} \wedge \neg r_{s_{5}}\right)
$$

5. We obtain a satisying assignment A for the constraints by setting $A\left(r_{s_{1}}\right)=A\left(r_{s_{3}}\right)=A\left(r_{s_{4}}\right)=A\left(r_{s_{6}}\right)=$ $A\left(r_{s_{7}}\right)=1$ and $A\left(r_{s_{2}}\right)=A\left(r_{s_{5}}\right)=0$. The trap obtained from these constraints is $R=\left\{s_{1}, s_{3}, s_{4}, s_{6}, s_{7}\right\}$. As the trap is marked at M_{0}, it needs to stay marked in any reachable marking, therefore the marking M is not reachable.
