Petri nets — Exercise Sheet 5

Exercise 5.1

Consider the following Petri net (with weights) \mathcal{N} :

- (a) Build the incidence matrix of \mathcal{N} .
- (b) Let $M_0 = \{p_1, p_1\}$. Try to determine whether

$$M_0 \xrightarrow{*} \{p_1, p_1, p_1, p_4\},$$

$$M_0 \xrightarrow{*} \{p_1, p_1, p_1, p_1, p_2\},$$

$$M_0 \xrightarrow{*} \{p_1, p_2, p_5\},$$

by solving the marking equation.

Exercise 5.2

For the following invariants, check if the net below has such an invariant. If yes, give one such invariant.

- 1. a semi-positive T-invariant
- 2. a positive T-invariant

Exercise 5.3

Exhibit counterexamples that disprove the following conjectures:

- 1. For a Petri net (\mathcal{N}, M_0) , an S-invariant I of \mathcal{N} and a marking M, if $I \cdot M_0 = I \cdot M$, then M is reachable from M_0 .
- 2. For a Petri net (\mathcal{N}, M_0) and a place s of \mathcal{N} , if s is bounded, then there is an S-invariant I of \mathcal{N} with I(s) > 0.

Exercise 5.4

On exercise sheet 1, we saw Lamport's algorithm for mutual exclusion. We used LoLA to show that it ensures mutual exclusion, which however needs state-space exploration. We now want to use invariants and traps to show that this holds. Below is a slightly smaller but equivalent model of Lamport's algorithm as a Petri net.

The goal is to show that there is no reachable marking M such that $M(p_3) \ge 1$ and $M(q_5) \ge 1$.

(a) The net has the following S-invariants I_1, \ldots, I_6 , which form a basis of the space of all S-invariants:

			p_1	p_2	p_3	x_t	x_f	q_1	q_2	q_3	q_4	q_5	y_t	y_f	
I_1	=	(1	1	1	0	0	0	0	0	0	0	0	0)
I_2	=	(0	1	1	0	1	0	0	0	0	0	0	0)
I_3	=	(0	0	0	1	1	0	0	0	0	0	0	0)
I_4	=	(0	0	0	0	0	1	1	1	1	1	0	0)
I_5	=	(0	0	0	0	0	0	1	1	0	1	0	1)
I_6	=	(0	0	0	0	0	0	0	0	0	0	1	1)

Use these invariants to show that there is a unique marking M where $M \sim M_0, M(p_3) \ge 1$ and $M(q_5) \ge 1$.

(b) Use traps to show that the marking M derived in (a) is not reachable from M_0 . For this, find the largest unmarked trap at M using the algorithm for the largest siphon, adapted to traps.

Exercise 5.5

- 1. Give a procedure that, given a net \mathcal{N} , constructs a boolean formula φ satisfying the following properties:
 - The formula contains variables r_s for each place $s \in S$,

- if φ is satisfiable, then \mathcal{N} has a trap,
- and if φ is not satisfiable, then \mathcal{N} has no trap.
- Additionally, if A is a model of φ , then the set given by $R = \{s \mid A(r_s)\}$ is a trap of \mathcal{N} .
- 2. Apply your procedure to the Petri net on the left below and give the resulting constraints.
- 3. Adapt your procedure such that, given two marking M_0 and M, it adds additional constraints to ensure that any trap R obtained as a solution by the constraints is marked at M_0 and unmarked at M. The constraints should be satisfiable iff a trap marked at M_0 and unmarked at M exists.
- 4. Construct the constraints for the Petri net below with the markings M_0 and M.
- 5. Use your constraints and the trap property to show that M is not reachable from M_0 in the net below.

Solution 5.1

(a)

 \bigstar This can be verified using APT by using the command java -jar apt.jar matrices pn_4-1.apt.

(b) Let us first write the markings as vectors:

$$M_0 = \begin{pmatrix} 2\\0\\0\\0\\0\\0 \end{pmatrix}, \quad M_1 = \begin{pmatrix} 3\\0\\0\\1\\0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 4\\1\\0\\0\\0\\0 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 1\\1\\0\\0\\1 \end{pmatrix}.$$

We need to solve $M_i = M_0 + \mathbf{N} \cdot X$, for each $i \in \{1, 2, 3\}$, which is equivalent to solving $\mathbf{N} \cdot X = M_i - M_0$. All three systems of equations can be solved simultaneously by using Gaussian elimination:

(-1	3	0	0	0	1	2	-1	۱ I	(1	0	0	0	0	-1	1	2
	1	-1	-1	2	0	0	1	1		0	1	0	0	0	0	1	1/3
	0	0	0	0	2	0	0	0	\sim	0	0	1	0	0	1	1	4/3
	0	-1	0	1	$^{-1}$	1	0	0		0	0	0	1	0	1	1	1/3
	0	0	1	$^{-1}$	0	0	0	1 /	/	0	0	0	0	1	0	0	0 /

Markings M_1 and M_3 are not reachable from M_0 since their associated (unique) solutions contain respectively negative and non integer values. Since the marking equation for M_2 has a non negative integer solution, we cannot conclude whether M_2 can be reached or not. In fact, a closer look at the Petri net shows that it is reachable since $M_0 \xrightarrow{t_1 t_3 t_4 t_2} M_2$.

Solution 5.2

A vector J is a T-invariant if $\mathbf{N} \cdot J = 0$ or if $\forall s \in S : \sum_{t \in \bullet_s} J(t) = \sum_{t \in s} J(t)$ or $J = \boldsymbol{\sigma}$ for some occurrence sequence σ and marking M with $M \xrightarrow{\sigma} M$ (fundamental property of T-invariants). By the second definition, we obtain the following equations for a T-invariant $J = (t_1, t_2, t_3, t_4, t_5)$:

$$t_1 = t_2$$

$$t_3 = t_1 + t_4$$

$$t_2 = t_3$$

$$t_5 = t_2$$

$$+ t_4 = t_5$$

 t_3

These can be simplified and reduced to following equivalent set of equations:

$$t_1 = t_2 = t_3 = t_5$$

 $t_4 = 0$

By specifying t_1 the T-invariant is completely defined. By setting $t_1 = 1$, we obtain the following semi-positive T-invariant:

$$J = (1, 1, 1, 1, 0)$$

As $t_4 = 0$ for all T-invariants, there can be no positive T-invariant.

Solution 5.3

1. In the following net, we have I = (0) as an S-invariant (the zero vector is an S-invariant for any net), and therefore we have $I \cdot M_0 = 0 = I \cdot M$ for any markings M_0 and M. However the marking M = (2) is not reachable from $M_0 = (1)$.

2. In the following net, the place s_1 is bounded. We have $\mathbf{N} = (-1)$ and therefore $I(s_1) = 0$ for any S-invariant.

As a more interesting example, take the following Petri net, known from exercise 2.1(c), which is live and bounded.

Any S-invariant I would need to satisfy

$$I(s_1) = I(s_2) + I(s_5)$$

$$I(s_2) = I(s_1) + I(s_5)$$

$$I(s_3) = I(s_4) + I(s_5)$$

$$I(s_4) = I(s_3) + I(s_5)$$

and therefore $I(s_5) = 0$, so there is no positive S-invariant.

Solution 5.4

(a) Assume $M \sim M_0, M(p_3) \ge 1$ and $M(q_5) \ge 1$. We then need to have $I_k \cdot M = I_k \cdot M_0$ for $k \in \{1, 2, 3, 4, 5, 6\}$. We can then derive

$$\frac{I_1 \cdot M = I_1 \cdot M_0}{\sum_{i=1}^3 M(p_i) = 1} \quad M(p_3) \ge 1 \qquad I_2 \cdot M = I_2 \cdot M_0 \\
\frac{M(p_1) = 0, \quad M(p_2) = 0, \quad M(p_3) = 1}{M(x_f) = 0} \quad \frac{I_2 \cdot M = I_2 \cdot M_0}{M(p_2) + M(p_3) + M(x_f) = 1} \quad I_3 \cdot M = I_3 \cdot M_0 \\
\frac{M(x_f) = 0}{M(x_f) = 1}$$

and

л*1*

$$\begin{array}{c} \underline{I_4 \cdot M = I_4 \cdot M_0} \\ \hline \underline{\Sigma_{i=1}^5 M(q_i) = 1} & M(q_5) \ge 1 \\ \hline M(\{q_1, q_2, q_3, q_4\}) = 0, \ M(q_5) = 1 & \hline M(q_2) + M(q_3) + M(q_5) + M(y_f) = 1 \\ \hline \underline{M(y_f) = 0} & \hline M(y_t) = 1 \\ \hline \end{array} \qquad \begin{array}{c} I_6 \cdot M = I_6 \cdot M_0 \\ \hline M(y_t) + M(y_f) = 1 \\ \hline \end{array}$$

from which it follows that $M = \{p_3, x_t, q_5, y_t\}$. We have that M agrees with M_0 on I_1, \ldots, I_6 , and as these are a basis, also on all invariants. Therefore we have $M \sim M_0$. This means using only invariants (or the marking equation over the rationals), we can not conclude that M is not reachable from M_0 .

 \star A basis of the space of *semi-positive* S-invariants of this can be found with APT by using the command java -jar apt.jar invariants lamport_4-4.apt s.

(b) As the invariants in (a) were inconclusive in determining if a marking M with $M(p_3) \ge 1$ and $M(q_5)$ is reachable, we now use traps to show that the M of (a) is not reachable. We want to find a trap R such that $M_0(R) > 0$ and M(R) = 0, therefore violating the fundamental property of traps for reachable markings.

It suffices to look at the largest unmarked trap in M, derived with the fixed-point algorithm for siphons from the lecture, adapted to traps by switching pre- and postsets. Initially, we set $R = \{s \in S \mid M(s) = 0\}$. We then obtain:

$$R = \{p_1, p_2, x_f, q_1, q_2, q_3, q_4, y_f\} = S \setminus \{p_3, x_t, q_5, y_t\}$$

• $R = \{s_1, s_2, s_3, s_4, t_1, t_2, t_3, t_4, t_5, t_6, t_7\} = T$
 R • $= \{s_1, s_2, s_3, t_1, t_2, t_3, t_4, t_5, t_6\} = T \setminus \{s_4, t_7\}$

We have $R^{\bullet} \subseteq {}^{\bullet}R$, so R is already a trap and our solution to the largest unmarked trap at M.

With $M_0 = \{p_1, x_f, q_1, y_f\}$ we have $M_0(R) = 4 > 0$. As M(R) = 0, by the fundamental property of traps, we then obtain that M is not reachable from M_0 . We showed in (a) that this M is the only M with $M(p_3) \ge 1$ and $M(q_5) \ge 1$ satisfying $M \sim M_0$, and thus also the only M for which the marking equation has a solution. With our trap R it then follows that there is no such M where both $M \sim M_0$ and M(R) > 0 hold, so no such M is reachable. This shows that the algorithm satisfies mutual exclusion. \bigstar The minimal trap $R' = \{p_2, q_2, q_3, x_f, y_f\} \subseteq R$ would also be sufficient to show this property. This trap can be found e.g. with APT by using the command java -jar apt.jar traps lamport_4-4.apt.

Solution 5.5

1. Any trap R satisfies $R^{\bullet} \subseteq {}^{\bullet}R$ and therefore $\forall t \in T : \exists s \in {}^{\bullet}t : s \in R \implies \exists s' \in t^{\bullet} : s' \in R$. This can be encoded with the following formula, which can be unrolled for a given net N:

$$\bigwedge_{t \in T} \left(\left(\bigvee_{s \in pret} r_s \right) \implies \left(\bigvee_{s' \in postt} r'_s \right) \right)$$

Any assignment satisfying the formula gives rise to a set R which satisfies the trap condition and is therefore a trap.

2. The constraints are as follows:

$$\begin{array}{cccc} r_{s_1} \implies r_{s_2} \lor r_{s_3} \\ r_{s_1} \implies r_{s_4} \lor r_{s_5} \\ r_{s_2} \implies r_{s_6} \\ r_{s_3} \implies r_{s_7} \\ r_{s_4} \implies r_{s_6} \\ r_{s_5} \implies r_{s_7} \\ r_{s_6} \lor r_{s_7} \implies r_{s_1} \end{array}$$

3. To ensure that the trap is marked at M_0 and unmarked at M, we can add the following constraint:

$$\left(\bigvee_{s\in S: M_0(s)>0} r_s\right) \wedge \left(\bigwedge_{s\in S: M(s)>0} \neg r_s\right)$$

4. The additional constraints are:

$$r_{s_1} \wedge (\neg r_{s_2} \wedge \neg r_{s_5})$$

5. We obtain a satisfying assignment A for the constraints by setting $A(r_{s_1}) = A(r_{s_3}) = A(r_{s_4}) = A(r_{s_6}) = A(r_{s_7}) = 1$ and $A(r_{s_2}) = A(r_{s_5}) = 0$. The trap obtained from these constraints is $R = \{s_1, s_3, s_4, s_6, s_7\}$. As the trap is marked at M_0 , it needs to stay marked in any reachable marking, therefore the marking M is not reachable.