Petri nets - Exercise Sheet 5

Exercise 5.1

Consider the following Petri net (with weights) \mathcal{N} :

(a) Build the incidence matrix of \mathcal{N}.
(b) Let $M_{0}=\left\{p_{1}, p_{1}\right\}$. Try to determine whether

$$
\begin{aligned}
& M_{0} \xrightarrow{*}\left\{p_{1}, p_{1}, p_{1}, p_{4}\right\}, \\
& M_{0} \xrightarrow{\rightarrow}\left\{p_{1}, p_{1}, p_{1}, p_{1}, p_{2}\right\}, \\
& M_{0} \xrightarrow{\rightarrow}\left\{p_{1}, p_{2}, p_{5}\right\},
\end{aligned}
$$

by solving the marking equation.

Exercise 5.2

For the following invariants, check if the net below has such an invariant. If yes, give one such invariant.

1. a semi-positive T-invariant
2. a positive T-invariant

Exercise 5.3

Exhibit counterexamples that disprove the following conjectures:

1. For a Petri net $\left(\mathcal{N}, M_{0}\right)$, an S-invariant I of \mathcal{N} and a marking M, if $I \cdot M_{0}=I \cdot M$, then M is reachable from M_{0}.
2. For a Petri net $\left(\mathcal{N}, M_{0}\right)$ and a place s of \mathcal{N}, if s is bounded, then there is an S-invariant I of \mathcal{N} with $I(s)>0$.

Exercise 5.4

On exercise sheet 1, we saw Lamport's algorithm for mutual exclusion. We used LoLA to show that it ensures mutual exclusion, which however needs state-space exploration. We now want to use invariants and traps to show that this holds. Below is a slightly smaller but equivalent model of Lamport's algorithm as a Petri net.

The goal is to show that there is no reachable marking M such that $M\left(p_{3}\right) \geq 1$ and $M\left(q_{5}\right) \geq 1$.
(a) The net has the following S-invariants I_{1}, \ldots, I_{6}, which form a basis of the space of all S-invariants:

Use these invariants to show that there is a unique marking M where $M \sim M_{0}, M\left(p_{3}\right) \geq 1$ and $M\left(q_{5}\right) \geq 1$.
(b) Use traps to show that the marking M derived in (a) is not reachable from M_{0}. For this, find the largest unmarked trap at M using the algorithm for the largest siphon, adapted to traps.

Exercise 5.5

1. Give a procedure that, given a net \mathcal{N}, constructs a boolean formula φ satisfying the following properties:

- The formula contains variables r_{s} for each place $s \in S$,
- if φ is satisfiable, then \mathcal{N} has a trap,
- and if φ is not satisfiable, then \mathcal{N} has no trap.
- Additionally, if A is a model of φ, then the set given by $R=\left\{s \mid A\left(r_{s}\right)\right\}$ is a trap of \mathcal{N}.

2. Apply your procedure to the Petri net on the left below and give the resulting constraints.
3. Adapt your procedure such that, given two marking M_{0} and M, it adds additional constraints to ensure that any trap R obtained as a solution by the constraints is marked at M_{0} and unmarked at M. The constraints should be satisfiable iff a trap marked at M_{0} and unmarked at M exists.
4. Construct the constraints for the Petri net below with the markings M_{0} and M.
5. Use your constraints and the trap property to show that M is not reachable from M_{0} in the net below.

