Petri nets — Exercise Sheet 5

Exercise 5.1

Consider the following Petri net (with weights) \mathcal{N} :

- (a) Build the incidence matrix of \mathcal{N} .
- (b) Let $M_0 = \{p_1, p_1\}$. Try to determine whether

$$M_0 \xrightarrow{*} \{p_1, p_1, p_1, p_4\},$$

$$M_0 \xrightarrow{*} \{p_1, p_1, p_1, p_1, p_2\},$$

$$M_0 \xrightarrow{*} \{p_1, p_2, p_5\},$$

by solving the marking equation.

Exercise 5.2

For the following invariants, check if the net below has such an invariant. If yes, give one such invariant.

- 1. a semi-positive T-invariant
- 2. a positive T-invariant

Exercise 5.3

Exhibit counterexamples that disprove the following conjectures:

- 1. For a Petri net (\mathcal{N}, M_0) , an S-invariant I of \mathcal{N} and a marking M, if $I \cdot M_0 = I \cdot M$, then M is reachable from M_0 .
- 2. For a Petri net (\mathcal{N}, M_0) and a place s of \mathcal{N} , if s is bounded, then there is an S-invariant I of \mathcal{N} with I(s) > 0.

Exercise 5.4

On exercise sheet 1, we saw Lamport's algorithm for mutual exclusion. We used LoLA to show that it ensures mutual exclusion, which however needs state-space exploration. We now want to use invariants and traps to show that this holds. Below is a slightly smaller but equivalent model of Lamport's algorithm as a Petri net.

The goal is to show that there is no reachable marking M such that $M(p_3) \ge 1$ and $M(q_5) \ge 1$.

(a) The net has the following S-invariants I_1, \ldots, I_6 , which form a basis of the space of all S-invariants:

			p_1	p_2	p_3	x_t	x_f	q_1	q_2	q_3	q_4	q_5	y_t	y_f	
I_1	=	(1	1	1	0	0	0	0	0	0	0	0	0)
I_2	=	(0	1	1	0	1	0	0	0	0	0	0	0)
I_3	=	(0	0	0	1	1	0	0	0	0	0	0	0)
I_4	=	(0	0	0	0	0	1	1	1	1	1	0	0)
I_5	=	(0	0	0	0	0	0	1	1	0	1	0	1)
I_6	=	(0	0	0	0	0	0	0	0	0	0	1	1)

Use these invariants to show that there is a unique marking M where $M \sim M_0, M(p_3) \geq 1$ and $M(q_5) \geq 1$.

(b) Use traps to show that the marking M derived in (a) is not reachable from M_0 . For this, find the largest unmarked trap at M using the algorithm for the largest siphon, adapted to traps.

Exercise 5.5

- 1. Give a procedure that, given a net \mathcal{N} , constructs a boolean formula φ satisfying the following properties:
 - The formula contains variables r_s for each place $s \in S$,

- if φ is satisfiable, then \mathcal{N} has a trap,
- and if φ is not satisfiable, then \mathcal{N} has no trap.
- Additionally, if A is a model of φ , then the set given by $R = \{s \mid A(r_s)\}$ is a trap of \mathcal{N} .
- 2. Apply your procedure to the Petri net on the left below and give the resulting constraints.
- 3. Adapt your procedure such that, given two marking M_0 and M, it adds additional constraints to ensure that any trap R obtained as a solution by the constraints is marked at M_0 and unmarked at M. The constraints should be satisfiable iff a trap marked at M_0 and unmarked at M exists.
- 4. Construct the constraints for the Petri net below with the markings M_0 and M.
- 5. Use your constraints and the trap property to show that M is not reachable from M_0 in the net below.

