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Petri nets — Exercise Sheet 5

Exercise 5.1

Consider the following Petri net (with weights) N :
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(a) Build the incidence matrix of N .

(b) Let M0 = {p1, p1}. Try to determine whether

M0
∗−→ {p1, p1, p1, p4},

M0
∗−→ {p1, p1, p1, p1, p2},

M0
∗−→ {p1, p2, p5},

by solving the marking equation.

Exercise 5.2

For the following invariants, check if the net below has such an invariant. If yes, give one such invariant.

1. a semi-positive T-invariant

2. a positive T-invariant
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Exercise 5.3

Exhibit counterexamples that disprove the following conjectures:

1. For a Petri net (N ,M0), an S-invariant I of N and a marking M , if I ·M0 = I ·M , then M is reachable
from M0.

2. For a Petri net (N ,M0) and a place s of N , if s is bounded, then there is an S-invariant I of N with
I(s) > 0.

Exercise 5.4

On exercise sheet 1, we saw Lamport’s algorithm for mutual exclusion. We used LoLA to show that it ensures
mutual exclusion, which however needs state-space exploration. We now want to use invariants and traps to
show that this holds. Below is a slightly smaller but equivalent model of Lamport’s algorithm as a Petri net.

p1:
p2:
p3:

First process

x = False
while True:

x = True
while y: pass
# critical section
x = False

q1:
q2:
q3:
q4:

q5:

Second process

y = False
while True:

y = True
if x:

y = False
while x: pass
goto q1

# critical section
y = False
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The goal is to show that there is no reachable marking M such that M(p3) ≥ 1 and M(q5) ≥ 1.

(a) The net has the following S-invariants I1, . . . , I6, which form a basis of the space of all S-invariants:

p1 p2 p3 xt xf q1 q2 q3 q4 q5 yt yf
I1 = ( 1 1 1 0 0 0 0 0 0 0 0 0 )
I2 = ( 0 1 1 0 1 0 0 0 0 0 0 0 )
I3 = ( 0 0 0 1 1 0 0 0 0 0 0 0 )
I4 = ( 0 0 0 0 0 1 1 1 1 1 0 0 )
I5 = ( 0 0 0 0 0 0 1 1 0 1 0 1 )
I6 = ( 0 0 0 0 0 0 0 0 0 0 1 1 )

Use these invariants to show that there is a unique marking M where M ∼M0, M(p3) ≥ 1 and M(q5) ≥ 1.

(b) Use traps to show that the marking M derived in (a) is not reachable from M0. For this, find the largest
unmarked trap at M using the algorithm for the largest siphon, adapted to traps.

Exercise 5.5

1. Give a procedure that, given a net N , constructs a boolean formula ϕ satisfying the following properties:

• The formula contains variables rs for each place s ∈ S,
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• if ϕ is satisfiable, then N has a trap,

• and if ϕ is not satisfiable, then N has no trap.

• Additionally, if A is a model of ϕ, then the set given by R = {s | A(rs)} is a trap of N .

2. Apply your procedure to the Petri net on the left below and give the resulting constraints.

3. Adapt your procedure such that, given two marking M0 and M , it adds additional constraints to ensure
that any trap R obtained as a solution by the constraints is marked at M0 and unmarked at M . The
constraints should be satisfiable iff a trap marked at M0 and unmarked at M exists.

4. Construct the constraints for the Petri net below with the markings M0 and M .

5. Use your constraints and the trap property to show that M is not reachable from M0 in the net below.
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