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Petri nets — Exercise Sheet 4

Exercise 4.1

(a) Show that
X =

{
(x1, x2, x3) ∈ N3 : (x1 + 3 ≤ x2 ≤ x3 + 1) ∨ (x2 = 2x1 + x3 + 5)

}
is semilinear by giving its representation as a finite set of roots and periods.

(b) Consider the following Petri net, and define its set of reachable markings. Show that the number of tokens
per place of these markings is describable by a semi-linear set.
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Exercise 4.2

(a) Reduce the coverability problem to the reachability problem.

For that, describe an algorithm that, given a Petri net (N ,M0) and a marking M , constructs a Petri net
(N ′,M ′0) and a marking M ′ such that M ′ is reachable in N ′ from M ′0 if and only if M is coverable in
N from M0. The algorithm should run in polynomial time.

(b) Consider problem P:

INPUT: A Petri net (N ,M0) and a transition t of N .
QUESTION: Is there an infinite run σ in (N ,M0) such that t occurs infinitely many times in σ ?

You are given an algorithm that, given a Petri net, returns its coverability graph. Using this algorithm,
devise an algorithm to solve problem P.

Then prove this algorithm correct : prove that there exists an infinite run σ in (N ,M0) such that t occurs
infinitely many times in σ if and only if the algorithm gives the correct answer.
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Exercise 4.3

We want to show that the following Petri net with weighted arcs has a non-semilinear reachability set.
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Consider the following sets of markings, given as M = (s1, s2, s3, s4, s5):

M1 = {(1, 0, x1, x2, x3) | 0 < x2 + x3 ≤ 2x1}
M2 = {(0, 1, x1, x2, x3) | 0 < 2x2 + x3 ≤ 2x1+1}
M =M1 ∪M2

The set M is non-semilinear. We are going to show that M is equal to the set of reachable markings for the
above Petri net.

1. Show that if M0
∗−→M , then M ∈M. For this, show that M0 ∈M and if M ∈M and M

t−→M ′ for some
transition t, then also M ′ ∈M.

2. Show that if M ∈M, then M0
∗−→M .

Note: This is a rather hard exercise. Hint : Do this by induction on x1 = M(s3) for M ∈ M. In the
induction step at x1, do a case distinction between M ∈ M1 and M ∈ M2. In each case, find an M ′ for
which you can apply the induction hypothesis and from which M is reachable.

Exercise 4.4

(a) Show that the upward closed sets (⊆ Nk for some positive constant k) are semi-linear.

(b) The dual notion of an upward closed set is called a downward closed set. Downward closed sets (⊆ Nk for
some positive constant k) are sets M such that ∀M,M ′ ∈ Nk, if M ∈M and M ′ ≤M then M ′ ∈M.

• Show that the complement of a downward closed set is upward closed.

• Show that downward closed sets are also semi-linear, using the fact that a finite intersection of
semi-linear sets is semi-linear.
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Solution 4.1

(a)

X = (0, 3, 2) + N · (1, 1, 1) + N · (0, 1, 1) + N · (0, 0, 1) ∪
(0, 5, 0) + N · (1, 2, 0) + N · (0, 1, 1)

(b) The markings reachable from (1, 0, 0, 0, 0) are the markings M such that M(p1) = 1 and M(p2)+M(p3) =
M(p4) +M(p5). So the reachability set of the Petri net is

(1, 0, 0, 0, 0) + N · (0, 1, 0, 1, 0)

+ N · (0, 1, 0, 0, 1)

+ N · (0, 0, 1, 1, 0)

+ N · (0, 0, 1, 0, 1)

Solution 4.2

(a) Let N ′ be a copy of N and for each place of N , add a transition to N ′ with that place as its only input
place and no output places. Let the initial marking and target marking for N ′ be the same as for N ,
i.e. M ′0 = M0 and M ′ = M .

If M is coverable in N by some marking M1 ≥M , then we can also reach M1 in N ′, and fire the additional
transitions to reduce tokens until we reach M = M ′ in N ′.
On the other hand, if M ′ is reachable in N ′, then we can execute the sequence to reach M ′ without
firing the additional transitions. That sequence is also enabled in N at M0 and leads to a marking
M1 ≥M ′ = M , so M is coverable in N .

Formal answer (given for clarity):

Define the net N ′ = (S′, T ′, F ′) with S′ = S, T ′ = T ] {ts | s ∈ S} and F ′ = F ∪ {(s, ts) | s ∈ S} and the
markings M ′0 = M0 and M ′ = M .

If M is coverable in N from M0, then there is a marking M1 and an occurrence sequence σ with M0
σ−→M1

in N and M1 ≥ M . Then also M ′0
σ−→ M1 in N ′. From M1, for each s ∈ S, we can fire ts exactly

M1(s)−M(s) times. This yields our target marking M = M ′, so M ′ is reachable in N ′ from M ′0.

On the other hand, if M ′ is reachable in N ′ from M ′0, then there is an occurrence sequence σ with

M ′0
σ−→ M ′ in N ′. Let τ be the occurrence sequence obtained from σ by removing all occurrences of ts

for s ∈ S. As every ts only removes tokens in N ′, by the monotonicity property of Petri nets, τ is also
enabled at M ′0 in N ′ and as τ only contains transitions from T , it is also enabled at M0 in N . This yields

M0
τ−→M1 in N for some marking M1 with M1 ≥M ′ = M , so M is coverable in N from M0.

(b) In the tutorial, the following solution was presented, but it was incorrect:

Given a Petri net (N ,M0) and a transition t, we give a procedure that answers if there exists an infinite
run σ such that t occurs infinitely many times in σ. Let N ′ be a copy of N = (S, T, F ). We add a new
place pt and an arc from transition t to place pt. Let M ′0 be equal to M0 over S and equal to 0 on pt.
We run the given algorithm on (N ′,M ′0) to obtain its coverability graph. If there exists a marking of the
coverability graph that contains an ω in place pt then we answer yes, and otherwise no.

This was incorrect because it is possible to exhibit a Petri net with place pt for some t whose coverability
graph contains an ω in pt, but in which there is no infinite run with an infinite number of t. Here is such
a Petri net courtesy of Philipp Czerner.
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To fire t from the initial marking, transition t2 must be fired at least once, then t1 must be fired, and then
t can be fired as many times as t2 was fired. Transitions t2 and t can be fired an unbounded number of
times, so the coverability graph contains an ω in pt, but there is no infinite sequence that fires t infinitely
often (in fact, once t1 has been fired there can be no infinite sequence at all).

So this algorithm was too simplistic. It is still possible to reduce problem P to an EXPSPACE problem
(like coverability, but unlike reachability), but the proof is quite complicated. For those who are interested,
links to such a reduction can be found at the end of this solution. As an alternative reduction, we present
here a reduction of problem P to reachability.

Reduction to reachability: Let (N ,M0) be the net in which we want to solve whether there exists
a run with an infinite number of occurrences of transition t. We are going to construct another Petri
net (N ′,M ′0) such that M ′0 reaches the empty marking 0 in this new net if and only if there exists

M1,M2, σ1, σ2 such that M0
σ1−→ M1

σ2−→ M2 and M1 ≤ M2 and σ2 contains at least one occurence of t.
This will be an algorithm for problem P because the existence of such M1,M2, σ1, σ2 is equivalent to the
existence of a run with an infinite number of occurrences of transition t. Indeed:

• If there exists such a run in (N ,M0), then by Dickson’s Lemma, there exists an infinite sequence of

markings C1, C2, C3 . . . such that M0
∗−→ C1

∗−→ C2
∗−→ C3 . . . and C1 ≤ C2 ≤ C3 ≤ . . .. Since the run

admits an infinite number of occurrences of t, we can choose M1 = Ci,M2 = Cj and σ1, σ2 fulfilling
our condition.

• If there exists M1,M2, σ1, σ2 such that M0
σ1−→ M1

σ2−→ M2 and M1 ≤ M2 and σ2 contains at least
one occurence of t then the run σ1σ2σ2σ2 . . . is a run verifying our condition.

Our new net is going to be constituted of two copies of net (N ,M0) plus some additional control places.
Intuitively, there are three ”phases”: in the first phase, both copies of the net start in M0 and reach some
marking M1. In the second phase, the second copy goes from M1 to some M2. Finally in the third phase,
all the tokens are emptied out from the places, checking on the way that M1 ≤M2 and that t occurred in
the second phase in the second copy.

Let our new net (N ′,M ′0) be two copies of the original net N plus some new places and transitions.
We note the first copy’s places and transitions just as in N , and we note the second copy’s places and
transitions with a prime: that is if p is a place of the original net N , we note it p in the first copy and
p′ in the second copy. Both copies are initially marked with M0. To the second copy we add a place pt
and an arc from transition t′ to place pt. Outside of the two copies we add control places q1, q2, q3 and
transitions v1, v2, v3 initially marked in q1 such that

q1 q2 q3v1 v2 v3

The new initial marking M ′0 is thus a marking of M0 on both copies and a token in q1. Morally, a token
in place qi ∈ {q1, q2, q3} means that we are in ”phase i”.

For each transition u of the first copy, we draw arcs from q1 to u and from u to q1 as well as arcs from
the places of •u to u and from u to u• in the first copy, and from •u′ to u and from u to u′• in the second
copy,. In this way, while q1 is marked, the transitions are taken in the first copy but consume and produce
tokens on both copies at the same time.

For each transition u′ of the second copy, we draw arcs from q2 to u′ and from u′ to q2. In this way, while
q2 is marked, the transitions are taken only in the second copy.

For each place p in the original net N , we create a transition in our new net N ′ with incoming arcs from
p, p′ and q3 and an outgoing arc to q3. We also create a new transition with incoming arcs from p′ and
q3 and an outgoing arc to q3 for every place p′ of the second net including pt. In this way, while q3 is
marked, places of the first copy can be emptied ”at the same time” as the corresponding places in the
second copy, and extra tokens in the second copy can be emptied ”on their own”.

Finally, we add an arc from pt to v3. In this way, a token in q3 can be consumed only if pt was marked,
i.e. if t′ was fired at least once in the second copy.

This reduction from P to reachability of the empty marking is correct (sketch):

• If there exists M1,M2, σ1, σ2 such that M0
σ1−→ M1

σ2−→ M2 and M1 ≤ M2 and σ2 contains at least
one occurence of t then we can reach the empty marking in the following way: first execute σ1 on
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the transitions of the first copy which results in having marking M1 on both copies. Then fire v1,
and execute σ2 on the second copy (using primed transitions), marking pt when t′ is taken. Then fire
v2, and remove all tokens from M1 on both copies, thus leaving the first copy empty and the second
copy with the tokens of M2−M1 and tokens on pt. Then remove these tokens from the second copy,
leaving only 1 token in pt. Finally, fire v3 by consuming the token in pt and the token in q3.

• If there is a run σ from M ′0 to the empty marking in N ′ then there exists M1,M2, σ1, σ2 as described
above. By construction, σ is of the form σ′1v1σ

′
2v2σ

′
3v3. We can take M1 to be the marking on the

first copy after σ′1, σ1 to be σ′1 on the corresponding places of N , M2 to be the marking on the second
copy (not counting pt) after σ′2 and σ2 to be σ′2 on the corresponding places of N . This is correct by
construction, as described above.

Here are references to a reduction of P to EXPSPACE:
[1] https://www.sciencedirect.com/science/article/pii/089054019290059O
[2] https://link.springer.com/chapter/10.1007/978-3-642-04420-5_7

The paper in [1] shows that deciding the existence of sequences and markings

M0
σ1−→M1

σ2−→M2
σ3−→ . . .

σk−→Mk

satisfying some predicate F on M1, . . . ,Mk, σ1, . . . , σk is EXPSPACE-complete. F can contain terms of
the form Mi ≥ Mj or |σi|t > 0 (among others). The proof is done by adapting Rackoff’s result to show
there is always a sequence σ1. . . σk bounded by double exponential length, if any such sequence exists.

In [2], they show there is a small mistake in [1], and that in general, for any path formulas, the problem
is actually as hard as reachability, however when the formula implies Mk ≥ M1, it is still EXPSPACE-
complete. This then includes the ”Fair Nontermination Problems” and the problem P.

[2] also uses the idea of simulating k copies of the net to guess the markings M1, . . . ,Mk in phases and
verify the path formula by reducing the final marking to the empty marking, thus giving a reduction to
reachability.

Solution 4.3

1. We have M0 ∈M1. Now assume M ∈M and M
t−→M ′ for some transition t. We show that M ′ ∈M.

• M t1−→ M ′: Then M = (1, 0, x1, x2, x3) with x3 ≥ 1 and M ′ = (1, 0, x1, x2 + 1, x3 − 1). We have
0 < x2 + 1 + x3 − 1 = x2 + x3 ≤ 2x1 , therefore M ′ ∈M1.

• M t2−→ M ′: Then M = (0, 1, x1, x2, x3) with x2 ≥ 1 and M ′ = (0, 1, x1, x2 − 1, x3 + 2). We have
0 < 2(x2 − 1) + x3 + 2 = 2x2 + x3 ≤ 2x1+1, therefore M ′ ∈M2.

• M t3−→M ′: Then M = (0, 1, x1, x2, x3) and M ′ = (1, 0, x1 + 1, x2, x3). We have 0 < 2x2 +x3 ≤ 2x1+1

and so 0 < x2 + x3 ≤ 2x1+1, therefore M ′ ∈M1.

• M t4−→ M ′: Then M = (1, 0, x1, x2, x3) and M ′ = (0, 1, x1, x2, x3). We have 0 < x2 + x3 ≤ 2x1 and
so 0 < 2x2 + x3 ≤ 2x1+1, therefore M ′ ∈M2.

2. We show for all M , if M ∈M, then M0
∗−→M , by induction on x1 = M(s3).

Induction base: x1 = 0. Then M is one of the following and can be reached from M0:

• M = (1, 0, 0, 0, 1): M0
ε−→M .

• M = (1, 0, 0, 1, 0): M0
t1−→M .

• M = (0, 1, 0, 0, 1): M0
t4−→M .

• M = (0, 1, 0, 1, 0): M0
t1t4−−→M .

• M = (0, 1, 0, 0, 2): M0
t1t4t2−−−−→M .

Induction hypothesis: Let x1 > 0 and assume that for all M ′ with M ′(s3) < x1, if M ′ ∈ M, then

M0
∗−→M ′.

• Case 1 : M ∈ M1. Then M = (1, 0, x1, x2, x3) with 0 < x2 + x3 ≤ 2x1 . With M ′ := (0, 1, x1 −
1, 0, x2 + x3), we have M ′ ∈M2, so it is reachable by the induction hypothesis. M is then reachable
from M ′ with σ = t3t

x2
1 .
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• Case 2 : M ∈ M2. Then M = (0, 1, x1, x2, x3) with 0 < 2x2 + x3 ≤ 2x1+1. With M ′ := (0, 1, x1 −
1, 0, x2 + bx3

2 c+ x3 mod 2), we have M ′ ∈ M2, so it is reachable by the induction hypothesis. M is

then reachable from M ′ with σ = t3t
(x2+b x3

2 c)
1 t4t

b x3
2 c

2 , as x3 = 2bx3

2 c+ x3 mod 2.

Solution 4.4

(a) The finite union of semi-linear sets is semi-linear. An upward closed set of minimal elements {m1, ...,mn}
is the union of the upward closed sets of single minimal element mi. So we just need to show that for any
element m ∈ Nk, the upward closed set {m′ | m ≤ m′} is semi-linear. This set is actually even linear,
with root r = m and set of periods P the vectors pi ∈ Nk such that pi(j) = 1 if i = j and 0 otherwise, for
i, j ∈ {1, . . . , k}.

(b) • Let D be a downward closed set, let us show its complement is upward closed. Let M ∈ D and M ′

such that M ′ ≥ M . We reason by contradiction and suppose M ′ /∈ D. Then M ′ ∈ D. Since D is
downward closed, M must be in D, contradiction.

• Let D be a downward closed set. Its complement D is upward closed, so there are a finite number of
minimal elements m1, . . . ,mn such that D is the union of the upward closed sets of unique minimal
element mi. So D is the finite intersection of the mi ↑. We just need to show that for any element
m ∈ Nk, the set m ↑ is semi-linear.

Let M ∈ Nk. We have M ∈ m ↑ if and only if ∃j ∈ {1, . . . , k} such that M(j) < m(j). For a certain
j, this condition can be described as the semi-linear set

m(j)−1⋃
i=0

rj,i + Pj

where rj,i is the vector of Nk with rj,i(j) = i and 0 elsewhere, and Pj is the set of periods pi such
that pi(l) = 1 if i = l and 0 otherwise, for i ∈ {1, . . . , k} − {j}. Therefore the set m ↑ is semi-linear
as a finite union of these semi-linear unions for each j ∈ {1, . . . , k}
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