
Technische Universität München Summer Term 2019
I7
Prof. J. Esparza / Ch. Weil-Kennedy / P. Meyer 29.05.2019

Petri nets — Exercise Sheet 3

Exercise 3.1

Consider the following net N = (P, T, F ):
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(a) Draw a coverability graph for (N , {p1}).

(b) Is (N , {p1}) bounded? If so, why? If not, which places are bounded?

(c) Describe the set of markings coverable from {p1}.

(d) We say that a Petri net (N ,M0) terminates if all its firing sequences are finite. Does (N , {p1}) terminate?
Justify your answer.

Exercise 3.2

The algorithm Coverability-Graph does not specify how the coverability graph should be traversed during
its construction. Show that different traversal strategies can lead to different coverability graphs. More precisely,
exhibit a marking M and two different coverability graphs for (N ,M), where N is the following net:
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Exercise 3.3

Let N be the Petri net below.
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Apply the backwards reachability algorithm to describe the set of initial markings from which M = {p2, p2} is
coverable in N . Record all intermediate sets of markings with their finite representation of minimal elements.

Exercise 3.4

Give a procedure to decide the following problem:

Given a Petri net (N ,M0) and a transition sequence σ, is there a transition sequence σ′ such that σ′σ is enabled
at M0?

For the procedure, you may use any already known decision procedures and algorithms such as coverability
graph and backwards reachability, or you may adapt those algorithms or use parts of them.
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Solution 3.1

(a) The following is a coverability graph where nodes are labeled with respect to the total order p1 < p2 <
p3 < p4:

1, 0, 0, 0

0, 1, 0, 0 0, 0, 1, 1

1, 0, 0, ω

0, 1, 0, ω 0, 0, 1, ω

t2 t3

t1

t2

t4

t3

t1

(b) It is not bounded since some markings of the graph contain ω. Places p1, p2 and p3 are bounded because
no marking of the graph contains an ω in the three first components.

F This can also be tested with LoLA as follows:

> lola pn 2-4.lola -f "AG (p1 < oo)" --search=cover

lola: result: yes

lola: The net satisfies the given formula.

> lola pn 2-4.lola -f "AG (p2 < oo)" --search=cover

lola: result: yes

lola: The net satisfies the given formula.

> lola pn 2-4.lola -f "AG (p3 < oo)" --search=cover

lola: result: yes

lola: The net satisfies the given formula.

> lola pn 2-4.lola -f "AG (p4 < oo)" --search=cover

lola: result: no

lola: The net does not satisfy the given formula.

(c) {M ∈ NP : M(p1) +M(p2) +M(p3) = 1}.

(d) No, it does not terminate. A Petri net does not terminate if and only if its coverability graph contains a
cycle or at least one node with an ω. The above coverability graph contains both. In particular, t3t1(t2t4)ω

is an infinite firing sequence.

Solution 3.2

Note: the net is not the same as the one presented in the tutorial, as there was a problem finding a simple
marking answering the question.
Let M = {p1}. We exhibit two coverability graphs for (N ,M), where nodes are labeled with respect to the
total order p1 < p2 < p3. We construct the first coverability graph by exploring the configuration (1, 0, 0) and
its enabled transitions, then configuration (0, 1, 0) and then (1, 0, ω):
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1, 0, 0 0, 1, 0

1, 0, ω 0, 1, ω

0, ω, ωω, ω, ω

t2

t1

t2

t1

t4 t4

t3 t3

t1

t4 t4

t3, t4t1, t2, t3, t4

For the second coverability graph, we explore the configuration (1, 0, 0) and its enabled transitions, then con-
figuration (1, 0, ω) and then (0, 1, 0):

1, 0, 0 0, 1, 0

1, 0, ω 0, 1, ω

0, ω, ω1, ω, ω

ω, ω, ω

t2

t1

t2

t1

t4 t4

t3 t3

t1
t1

t2

t4 t4

t3, t4t3, t4

t1, t2, t3, t4

Treating configuration (1, 0, ω) and its enabled transitions before (0, 1, 0) allows configuration (1, ω, ω) to be
added to the graph.

4



Solution 3.3

We execute the backward algorithm from M = (0, 2). In order to build the whole set of initial markings, we
ignore the stopping criterion based on M0.

For the backwards reachability algorithm, it can be helpful to construct the reverse net, with all arcs inverted,
to compute the predecessors of markings. Then start with the target marking M and add tokens as necessary
for firing transitions.

We start with m0 = {(0, 2)}, which is the set of minimal elements for {M}. Recall that the backwards
reachability algorithm iteratively updates m to

m = min(m ∪
⋃
t∈T

pre(R[t] ∧m, t)).

We have R[t1] = (5, 0) and R[t2] = (1, 1).

pre(R[t1] ∧ (0, 2), t1) = pre((5, 2), t1) = (4, 4)

pre(R[t2] ∧ (0, 2), t2) = pre((1, 2), t2) = (2, 1)

After adding the new markings to m0 and eliminating non-minimal markings, our new set is m1 = {(0, 2), (2, 1)}.
For the new marking (2, 1), we compute the predecessors:

pre(R[t1] ∧ (2, 1), t1) = pre((5, 1), t1) = (4, 3)

pre(R[t2] ∧ (2, 1), t2) = pre((2, 1), t2) = (3, 0)

We add the new markings, take the minimal elements and obtain m2 = {(0, 2), (2, 1), (3, 0)}. For (3, 0), we
compute the predecessors:

pre(R[t1] ∧ (3, 0), t1) = pre((5, 0), t1) = (4, 2)

pre(R[t2] ∧ (3, 0), t2) = pre((3, 1), t2) = (4, 0)

No new minimal markings are obtained, so we have reached a fixpoint. The set of initial markings is {M ∈ N2 :
M ≥ (0, 2) or M ≥ (2, 1) or M ≥ (3, 0)}.

Solution 3.4

Let σ = t1t2 . . . tn. Consider the following algorithm:

Algorithm 0.1: Suffix Existence

m← {0}
for i from n to 1 do

m← min(pre(m, ti))
if ∃M ∈ m : M is coverable from M0 then

return there is a sequence σ′ s.t M0
σ′σ−−→

else

return there is no sequence σ′ s.t M0
σ′σ−−→

Basically, we fire σ backwards, starting from all markings (the upward closed set with the zero marking as the
minimal element). We obtain the set m of all markings where σ is enabled (again an upward closed set). We
then check if one the minimal markings of the set m is coverable from M0, and if yes, there is a sequence σ′

from which we can reach an element of m, and thus fire σ.

The existance of a coverable element in m can be checked with the coverability graph or the backwards reach-
ability algorithm. With the backwards reachability algorithm, we can directly start with m as the initial set of
minimal markings.
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