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Petri nets — Exercise sheet 2

Exercise 2.1

(a) Give a net N and two markings M and M ′ such that M ≤ M ′, (N ,M) is bounded, and (N ,M ′) is not
bounded.

(b) Give a net N and two markings M and M ′ such that M ≤ M ′, (N ,M) is deadlock-free, and (N ,M ′) is
not deadlock-free.

(c) Give a net N and two markings M and M ′ such that M ≤M ′, (N ,M) is bounded and live, and (N ,M ′)
is not bounded. Hint: Add a place and arcs to the following net to obtain a solution:
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Exercise 2.2

Let N = (P, T,W ) be a net with weighted arcs. Let M,M ′ ∈ NP , σ, σ′ ∈ T ∗ and t ∈ T be such that M
σtσ′

−−−→M ′.
Prove or disprove the following statements:

(a) if t does not consume any token, i.e W (p, t) = 0 for every p ∈ P , then M
tσσ′

−−−→M ′.

(b) if t consumes no more tokens than it produces, i.e W (p, t) ≤W (t, p) for every p ∈ P , then M
tσσ′

−−−→M ′.

(c) if t produces no more tokens than it consumes, i.e. W (t, p) ≤W (p, t) for every p ∈ P , then M
σσ′t−−−→M ′.



Exercise 2.3

Show that nets with place capacities and nets with weighted arcs are equivalent to standard nets. More precisely,
sketch two algorithms solving the two following problems. The worst-case running time of your algorithms should
be exponential.

(a)

Input: a net with place capacities N = (S, T, F,K), and two markings M and M ′.

Output: a net N ′ = (S′, T ′, F ′), and two markings L and L′, such that M
∗−→M ′ in N

if and only if L
∗−→ L′ in N ′.

Apply your algorithm on the net below to the left with M = {2 · q1, q2} and M ′ = {2 · q1, q3}.

(b)

Input: a net with weighted arcs N = (S, T,W ) and a markings M and M ′.

Output: a net N ′ = (S′, T ′, F ′), and two markings L and L′, such that M
∗−→M ′ in N

if and only if L
∗−→ L′ in N ′.

Apply your algorithm on the net below to the right with M = {q2} and M ′ = {q1, 2 · q2, q3}.
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Exercise 2.4

We define signed nets as N = (S, T, F,Σ, sN ), where (S, T, F ) is a classic net, Σ is a finite alphabet of labels and
sN : T → Σ is called the signature of N . Notice that the signature can assign the same label to two different
transitions. The signature can be extended to a function sN from T ∗ to Σ∗, using sN (σt) = sN (σ)sN (t) for
t ∈ T, σ ∈ T ∗. We call free a signed net such that Σ = T and sN is the identity.

For M0 ∈ NS a marking, we call (N ,M0) a signed Petri net. For Ct a set of markings, we call (N ,M0, Ct) a
terminal signed Petri net, and Ct is its set of terminal markings. We define

Lt(N ) = {w ∈ Σ∗|∃σ ∈ T ∗,∃C ∈ Ct.M0
σ−→ C ∧ sN (σ) = w}

the terminal language for (N ,M0, Ct).

(a) Show that regular languages (defined by automata) are included in terminal languages. Hint: Think of
how to transform a DFA into a signed net.

(b) Terminal languages can express more than just regular languages. For instance, show that the non context-
free language {anbncn|n ∈ N, n ≥ 1} is a terminal language for a certain terminal signed Petri net with a
finite terminal set of markings.

(c) If we consider only free terminal signed Petri nets, that is terminal signed Petri nets without duplication
of labels, then there are regular languages that are not terminal languages. There are even finite languages
that are not terminal languages, for example L = {abc, ba}. Show that L is not a terminal language for
any free terminal signed Petri net.



Solution 2.1

(a) The following net is bounded from the empty marking since its reachability set is empty. However, it is
not bounded from {p} since repetitively firing t increases the number of tokens in q.
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(b) The following net is deadlock-free from {p} since s is always enabled. However, it is not deadlock-free

from {p, q} since {p, q} t−→ {r} and {r} is dead.
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(c) The following Petri net is live and bounded with the black tokens, but not bounded with the additional
blue token in s4, as repeatedly firing t1t2 can put an arbitrary number of tokens in s5.
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Solution 2.2

(a) True. Let A,A′ ∈ NP be such that M
σ−→ A

t−→ A′
σ′

−→M ′. Since W (p, t) = 0 for every p ∈ P , t is enabled

at any marking. We have A′−A ≥ 0 with (A′−A)(p) = W (t, p) for every p ∈ P . Thus, M
t−→M+(A′−A)

and, by monotonicity, M + (A′ −A)
σ−→ A+ (A′ −A). Therefore,

M
t−→M + (A′ −A)

σ−→ A′
σ′

−→M ′.

Notice that symmetrically, the following is also true: if t does not produce any token, i.e. W (t, p) = 0 for

every p ∈ P , then M
σσ′t−−−→M ′.

(b) False. Consider the following Petri net:

p
st

We have 0
st−→ 1 and W (p, t) = W (t, p), yet ts cannot be fired from 0.



(c) False. Consider the following Petri net:

p
st

We have 1
ts−→ 0 and W (t, p) = W (p, t), yet st cannot be fired from 1.

Solution 2.3

(a) We define N ′ = (S′, T ′, F ′) as:

S′ = S ∪ {q′ : q ∈ P s.t. K(q) 6=∞},
T ′ = T,

F ′ = F ∪ {(q′, t) : (t, q) ∈ F ′,K(q) 6=∞} ∪ {(t, q′) : (q, t) ∈ F ′,K(q) 6=∞}.

Marking L is defined as the marking such that L(q) = M(q) for every q ∈ Q and L(q′) = K(q) −M(q)
for every q ∈ Q such that K(q) 6= ∞. Marking L′ is similarly defined as L′(q) = M ′(q) for every q ∈ Q
and L′(q′) = K(q)−M ′(q) for every q ∈ Q such that K(q) 6=∞.

The resulting net is:
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and the resulting markings are:

L = {2 · q1, 3 · q′1, q2, 3 · q′3},
L′ = {q1, 4 · q′1, 2 · q2, q3, 2 · q′3}.



(b) Let us first give a net for the given net with weighted arcs:
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where the markings are:

L = {q2, r},
L′ = {q1, 2 · q2, q3, r}.

More generally, a transition such as:
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can be converted into the following gadget that simulates the transition:
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rt,0 rt,1 rt,2 rt,3 rt,4tstart t1 t2 t3 t4 tend

t−1start t−11 t−12 t−13 t−14

where place r must be shared by all gadgets, and s−1 denotes the inverse transition of s, i.e., (p, s−1) ∈
F ⇐⇒ (s, p) ∈ F and (s−1, p) ∈ F ⇐⇒ (p, s) ∈ F for every place p (the arcs are not drawn for
readability reasons). Place r is a control place that enforces that only one transition of the original net
is being simulated at one time. The token in place r is consumed at the beginning of the simulation,
and replaced at the end. The inverse transitions are there so that we do not create a deadlock inside
the simulated transition. Indeed consider a marking of the gadget with four tokens in q, one token in
r and two tokens in p. The original transition being simulated would not have been enabled, but here
transition tstart is enabled and we can get to place rt,2 by taking t1 then t2. But then we are ”stuck” and
the transition t3 is not enabled. The inverse transitions allow us to ”backtrack” and bring the tokens back
into places p and q.

Solution 2.4

(a) Let L be a regular language given by a DFA (deterministic finite automaton) A. Without loss of generality,
we can take A = (Q,Σ, δ, q0, F ) with a single initial state q0, transition function δ : Q× Σ ⇀ Q and final
states F ⊆ Q.
We transform A into a terminal signed Petri net (N ,M0, Ct). The set of places of N is Q, its set of labels

is Σ and M0 is the marking that puts one token in q0 and 0 elsewhere. For every transition t : q
a−→ q′ in

A, we define a transition t in N such that (q, t) ∪ (t, q′) is in the flow of N and sN (t) = a. We define the
set of terminal markings Ct as the markings Mq that put one token in q and 0 elsewhere, for every final
state q ∈ F .

(b) We display a terminal signed Petri net (N ,M0, Ct) whose terminal language is {anbncn|n ∈ N, n ≥ 1}.
Let (N ,M0) be the signed Petri net illustrated below, with M0 = (1, 0, 0, 0, 0). Let Ct be the singleton set
{(0, 0, 0, 0, 0)}.
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This petri net appears in [1, Abb. 6.1].



(c) We reason by contradiction. Let us assume L is a terminal language for a terminal free signed Petri net
(N ,M0, Ct). Since a free signed net labels transitions uniquely, we must have at least three transitions
a, b, c in N . Transition sequences ab and ba are both enabled from M0 because abc and ba are in the
language. The monotonicity lemma for regular Petri nets still holds for signed Petri nets, as labelling the
transitions does not modify the proof of this lemma. Therefore initial marking M0 is modified in the same

way by the action of transition sequences ab and ba. That is, there exists M such that M0
ab−→ M and

M0
ba−→M . Since ba is in the language, M must be a terminal marking; but then ab is also in L, and this

is not the case.

References

[1] Lutz Priese and Harro Wimmel. Petri-netze. ISBN 3-540-44289-8, 2003.


