
Technische Universität München, I7 Summer term 2019
Prof. J. Esparza / Ch. Weil-Kennedy / P. Meyer 24.04.2019

Petri nets — Exercise sheet 1

Due 30.04.2019

Exercise 1.1 (adapted from [1, ex. 2.20])

Consider a simple production system in which raw parts are first processed by a machine A, stored into a buffer,
and then processed by a machine B. The parts are moved around using a single robot arm R. The buffer can
contain at most five items at a time, and machines A and B can only handle one item at a time.

raw partsproduce
finished parts

consume

A B

buffer

Model this production system as a Petri net by extending the partial model shown above. The actions of
machines A and B are not atomic: they have a beginning and an end. On the other hand, the action of the
robot arm can be considered as atomic. There is no need to distinguish between particular buffer places, or
between particular items to be processed.

Exercise 1.2

Consider Lamport’s 1-bit mutual exclusion algorithm:

First process Second process

1. while True: 1. while True:
2. x = True 2. y = True
3. while y: pass 3. if x then:
4. # critical section 4. y = False
5. x = False 5. while x: pass

6. goto 2
7. # critical section
8. y = False

The algorithm can be modeled by a Petri net N where each program location (i.e. line of code of a process)
is associated to a place, and where the shared binary variables x and y are associated to two places each. In

1



more details, N = (P, T, F ) where P = {a1, . . . , a5, b1, . . . , b8, xt, xf , yt, yf}. A token in ai (resp. bi) indicates
that the first (resp. second) process is at line i; a token in xt (resp. yt) indicates that x (resp. y) has value
True; and a token in xf (resp. yf ) indicates that x (resp. y) has value False. The initial marking of N is
M0 = {a1, b1, xf , yf}. We give a partial Petri net that only models the second process:

a1

a2

a3

a4

a5

xt

xf

yt

yf

b1

b2

b3

b4

b5

b6

b7

b8

t1

t2t3

t4t5

t6t7

t8t9

t10

t11

t12t13

(a) Complete the above Petri net N so that it also models the first process. You should not add new places,
only transitions and arcs. Note that pass is a “no operation”, i.e. an operation without any effect.

(b) Complete the given APT file for N accordingly, and verify whether

(i) (N ,M0) is bounded;

(ii) (N ,M0) is live.

(c) Complete the given LoLA file for N accordingly, and verify whether

(i) (N ,M0) is deadlock-free;

(ii) a process can be at multiple program locations at the same time;

(iii) whether both processes can reach their critical sections simultaneously.

2



Exercise 1.3

For each Petri net (N ,M0) below:

(a) construct the reachability graph of (N ,M0).

(b) say whether (N ,M0) is bounded, deadlock-free and/or live. If it is bounded, give the smallest k such that
it is k-bounded. Justify your answers.

(c) give the subnet N ′ = (P ′, T ′, F ′) of N such that P ′ = {p0, p1, p2, p4} and T ′ = T .

p0

p1

p2

p3

p4

t0 t1

t2

t3
2

2

2

p0

p1

p2

p3

p4

t0

t1

t2

t3

p0 p1

p2

p3

p4

p5

t0 t1

t2

t3

t4

2

3



Solution 1.1 (adapted from [1, ex. 2.20])

The production system can be modelled as follows:

raw partsproduce

free A busy A

free B busy B

places buffer robot

finished parts
consume

Notice that since the robot place is always marked, it could also be omitted.

4



Solution 1.2

(a)

a1

a2

a3

a4

a5

s1

s2 s3

s4 s5

s6

s7 s8

xt

xf

yt

yf

b1

b2

b3

b4

b5

b6

b7

b8

t1

t2t3

t4t5

t6t7

t8t9

t10

t11

t12t13

5



Notice that variable x will always have value false when the first process enters place a2, so transition s3
will never be used and can be omitted. Similarly with s7, t2 and t12.

(b) (i) > java -jar apt.jar bounded lamport.apt

bounded: Yes

smallest K: 1

(ii) > java -jar apt.jar strongly live lamport.apt

strongly live: No

sample witness transition: s3

sample witness firing sequence: [s1]

(c) (i) > lola lamport.lola -f "REACHABLE DEADLOCK"

lola: result: no

lola: The net does not have deadlocks.

(ii) > lola lamport.lola -f "REACHABLE (a1 + a2 + a3 + a4 + a5 > 1) OR (b1 + b2 + b3 + b4

+ b5 + b6 + b7 + b8 > 1)"

lola: result: no

lola: The predicate is unreachable.

(iii) > lola lamport.lola -f "REACHABLE (a4 > 0 AND b7 > 0)"

lola: result: no

lola: The predicate is unreachable.

Solution 1.3

1. (a)

{p0, 2 · p1}

{p1, p3, 2 · p2} {2 · p0, p1}

{p1, p2, p4}

{3 · p1}

{p0, 2 · p2, p3}

{p0, p2, p4}

t0 t3

t1

t2

t3
t0

t1

t2

(b) It is 3-bounded since all markings of the reachability graph have at most three tokens in each place. It
is deadlock-free since every marking of the reachability graph has an outgoing arc. It is live because
for every transition t, every marking M of the reachability graph leads to a marking M ′ with an
outgoing arc labeled by t.

F Alternatively, liveness follows from the fact that the reachability graph is strongly connected and
has an occurrence of every transition.

(c)

6



p0

p1

p2

p4

t0 t1

t2

t3
2

2

2

7



2. (a)

{p0, p1}

{p2, p3, p4}{p1, p2, p4} {p0, p3}

{p2, 2 · p4}

{p0, p4}

t0

t1

t3

t3 t1

t2

t3

(b) It is 2-bounded since all markings of the reachability graph have at most two tokens in each place.
It is not deadlock-free since {p0, p4} has no successor. It is not live since it is not deadlock-free.

(c)

p0

p1

p2

p4

t0

t1

t2

t3

8



3. (a)

{p0, p2, p3} {p1, p2, p3}

{p0, p4, p5} {p1, p4, p5}

{p0, p2, p5} {p1, p2, p5}

{p2, 2 · p3}

{p3, p4, p5}

{p2, p3, p5}

{p4, 2 · p5}

{p2, 2 · p5}{p1, p3, p4}

t0

t4

t0

t4

t2 t2

t0

t1

t4

t2

t4

t2
t3

t3

t1

t2

(b) It is not live since in the reachability graph has no path from {p1, p2, p3} that contains t0. It is
2-bounded since all markings of the reachability graph have at most 2 tokens in each place. It is
deadlock-free since every marking of the reachability graph has an outgoing arc.

F It is possible to show that the net is not live without inspecting the reachability graph. Note

that M0
t0−→ {p1, p2, p3}. Moreover, N has no transition that produces a token in p0. Therefore,

{p1, p2, p3} cannot reach any marking from which t0 is enabled.

F There is an alternative way to prove 2-boundness and deadlock-freedom without inspecting the
reachability graph. Let Q = {p0, p1, p3, p5} and R = {p2, p4}. We claim that M(Q) = 2 and
M(R) = 1 for every reachable marking M . The claim clearly holds for M0. Moreover, every
transition of N consumes and produces the same amount of tokens from both Q and R, which proves
the claim. Now, for the sake of contradiction, assume there exists a deadlock, e.g. there exists some
reachable marking M from which no transition is enabled. By definition of transitions t0, t2 and t3,

9



this implies that

M(p0) = 0,

M(p4) = 0,

M(p5) ≤ 1,

and hence, by the claim, that M(p1) + M(p3) ≥ 1 and M(p2) = 1. In particular M(p1) > 0 or
M(p3) > 0. If the former holds, then t1 is enabled, if the latter holds, then t4 is enabled. Both cases
yield contradictions.

(c)

p0 p1

p2

p4

t0 t1

t2

t3

t4

References

[1] Wil van der Aalst, Massimiliano de Leoni, Boudewijn van Dongen, and Christian Stahl. Course busi-
ness information systems: Exercises. Available at http://wwwis.win.tue.nl/~wvdaalst/old/courses/

BIScourse/exercise-bundle-BIS-2015.pdf, 2015.

10

http://wwwis.win.tue.nl/~wvdaalst/old/courses/BIScourse/exercise-bundle-BIS-2015.pdf
http://wwwis.win.tue.nl/~wvdaalst/old/courses/BIScourse/exercise-bundle-BIS-2015.pdf

