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Prof. J. Esparza / Ch. Weil-Kennedy / P. Meyer

Petri nets — Endterm

• You have 75 minutes to complete the exam.

• Answers must be written in a separate booklet. Do not answer on the exam.

• Please let us know if you need more paper.

• Write your name and Matrikelnummer on every sheet.

• Write with a non-erasable pen. Do not use red or green.

• You are not allowed to use auxiliary means other than pen and paper.

• You can obtain 40 points. You need 17 points to pass.

• Note that we sometimes represent a marking M by the tuple (M(p1),M(p2), . . . ,M(pn)).

Question 1 (8 points)

Apply the backwards reachability algorithm to decide if the marking M = (0, 0, 2) is coverable by the initial
marking M0 = (2, 0, 0). Record all intermediate sets of markings with their finite representation of minimal
elements.

p1 p2

p3

t1

t2

Question 2 (4+5=9 points)

(a) Prove: Let (N,M0) be a live T-system. For every marking M , if M is reachable from M0, then M0 is
reachable from M .

(b) Consider a T-system (N,M0). We say (N,M0) is floodable if for all k ∈ N, there exists a marking M
reachable from M0 with at least k tokens in each place, i.e. such that M(s) ≥ k for all s ∈ S.

Give an algorithm that runs in polynomial time and decides whether or not a given T-system (N,M0) is
floodable.
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Question 3 (4+4=8 points)

Let (N,M0) be a Petri net with N = (S, T, F ), and let Mt be a marking of N . We define

L(N,M0,Mt) = {w ∈ T ∗|M0
w−→Mt}

the terminal language for (N,M0,Mt), where the transition set T is the alphabet of the language and the words
are the transition sequences leading to the terminal marking Mt.

(a) Give a Petri net (N,M0) and a terminal marking Mt such that the transition set of N is T = {a, b, c} and
the terminal language for (N,M0,Mt) is L = {aba, aca}.

(b) Give a Petri net (N,M0) such that the transition set of N is T = {a, b, c} and the terminal language for
(N,M0,M0) is L = L((abcb)∗) = {ε, abcb, abcbabcb, . . .}.

Question 4 (3+4+2=9 points)

Consider the following free-choice system:

p1

t1 t2

p2 p5

p3 p4

t3 t4

(a) Give all minimal proper siphons of the net.
Hint: There are four minimal proper siphons.

(b) Which of the siphons of (a) contain a proper trap? Justify your answer by giving the traps if they contain
one, or showing why no proper subset of the siphon is a trap.

(c) Use the results from (a) and (b) to decide if the system is live.

Question 5 (6 points)

Consider the class of Petri nets N where the following holds:

For all markings M,M ′ and vectors X : T → N, if M ′ = M +N ·X then there exists a sequence σ such that
σ = X and M

σ−→M ′

For this class of Petri nets, give an algorithm to decide the following problem by a reduction to the problem of
deciding if a linear system of equations has an integer solution:

Given a system (N,M0) and a transition t of N , is there an infinite run σ in (N,M0) such that t occurs infinitely
many times in σ?

The algorithm should construct a linear system of equations such that the system has an integer solution if and
only if the answer to the problem is positive. Further, the reduction should run in polynomial time.
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Solution 1 (8 points)

We start with m0 = {(0, 0, 2)}, which is the set of minimal elements for {M}. Recall that the backwards
reachability algorithm iteratively updates m to

m = min(m ∪
⋃
t∈T

pre(R[t] ∧m, t)).

We have R[t1] = (1, 1, 0) and R[t2] = (0, 1, 1).

pre(R[t1] ∧ (0, 0, 2), t1) = pre((1, 1, 2), t1) = (1, 0, 2)

pre(R[t2] ∧ (0, 0, 2), t2) = pre((0, 1, 2), t2) = (1, 1, 1)

After adding the new markings tom0 and eliminating non-minimal markings, our new set ism1 = {(0, 0, 2), (1, 1, 1)}.
For the new marking (1, 1, 1), we compute the predecessors:

pre(R[t1] ∧ (1, 1, 1), t1) = pre((1, 1, 1), t1) = (1, 0, 1)

pre(R[t2] ∧ (1, 1, 1), t2) = pre((1, 1, 1), t2) = (2, 1, 0)

We add the new markings, take the minimal elements and obtain m2 = {(0, 0, 2), (1, 0, 1), (2, 1, 0)}. For (2, 1, 0),
we compute the predecessors:

pre(R[t1] ∧ (2, 1, 0), t1) = pre((2, 1, 0), t1) = (2, 0, 0)

Here we stop because M0 now covers (actually, is equal to) a minimal marking that reaches a marking covering
M . So M0 does cover M .

Solution 2 (4+5=9 points)

(a) In a live T-system, a marking M is reachable from M0 iff M0 ∼M . Let M be a reachable marking. Then
M0 ∼M and, as the relation is symmetric, M ∼M0, so M0 is reachable from M .

(b) We check if the T-system contains a circuit by a depth-first search from all empty places. This can be
done in polynomial time. If the system contains a circuit, then the system is not floodable, otherwise it
is floodable.

Argument of correctness: If the system contains a circuit γ, then by the fundamental property of T-
systems, we have M(γ) = M0(γ) for any reachable marking M and therefore M(s) ≤M0(γ) for any place
s ∈ γ, so these s are bounded and the net is not floodable.

If the system contains no circuit, then the net is acyclic. We prove that any T-system without circuits
can be flooded by induction on the number of places n = |S|.
If n = 1, then there is only one s ∈ S and one t ∈ •s \ s•. For any k, we can fire the sequence tk to put k
tokens in s.

Now fix n ∈ N and assume that any T-system without circuits and n places is floodable. Let (N,M0) with
N = (S, T, F ) be a T-system without circuits and n+ 1 places. As N is acyclic, there exists a place s and
transitions t, u such that •s = {t}, s• = {u} and u• = ∅. With S′ = S \ {s}, F ′ = F ∩ (S′ × T ∪ T × S′),
N ′ = (S′, T, F ′) and M ′0(s′) = M0(s′) for any s′ ∈ S′, the system (N ′,M ′0) is a T-system without circuits
and n places. By the induction hypothesis, (N ′,M ′0) is floodable. Now let k ∈ N. By floodability, there
is a sequence σ′ in (N ′,M ′0) leading to a marking M ′ with M ′(s′) ≥ 2k for all s′ ∈ S′. We obtain σ
from σ′ by removing any occurrence of u. Then σ is fireable in (N,M0) and leads to a marking M with
M(s′) ≥ 2k for all s′ ∈ S′. Since the net is acyclic, we have s 6∈ •t. From M we can fire the sequence tk,
reaching a marking M ′′ where M ′′(s) ≥ k and M ′′(s′) ≥ k for each s′ ∈ S′. This shows that (N,M0) is
floodable by the sequence σtk.

Solution 3 (4+4=8 points)

(a) The following net with initial marking M0 = (2, 1, 0) and terminal marking Mt = (0, 0, 1) answers the
question.
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(b) The following net with M0 = (1, 0, 1, 0) and terminal marking M0 answers the question.

p1

p2 p3

p4a

b

c

Solution 4 (3+4+2=9 points)

(a) Any siphon R of the net needs to satisfy the following:

p2 ∈ R→ p1 ∈ R
p5 ∈ R→ p1 ∈ R

(p1 ∈ R ∨ p4 ∈ R)→ (p2 ∈ R ∨ p3 ∈ R)

(p1 ∈ R ∨ p3 ∈ R ∨ p4 ∈ R)→ (p4 ∈ R ∨ p5 ∈ R)

The only proper siphon not containing p1 is {p3, p4}. If p1 ∈ R, then we need to additionally choose one
of {p2, p3} and one of {p4, p5} to obtain a siphon. Of these combinations, {p1, p3, p4} is not minimal, but
the other three are. In total we get four minimal siphons:

R1 = {p3, p4}
R2 = {p1, p2, p5}
R3 = {p1, p2, p4}
R4 = {p1, p3, p5}

(b) The siphons R1 and R2 are traps by themselves, as

R•1 = •R1 = {t1, t2, t3, t4}
R•2 = •R2 = {t3, t4}

For R3, we have that {p4} ⊆ R3 is a trap, as

p•4 = {t4} ⊆ {t3, t4} = •p4

For any trap Q, we have

p1 ∈ Q→ p2 ∈ Q
p1 ∈ Q→ p5 ∈ Q

(p2 ∈ Q ∨ p3 ∈ Q)→ (p1 ∈ Q ∨ p4 ∈ Q)

(p4 ∈ Q ∨ p5 ∈ Q)→ (p1 ∈ Q ∨ p3 ∈ Q ∨ p4 ∈ Q)
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Therefore if one of p1, p3, p5 is in Q, then also p2 ∈ Q or p4 ∈ Q, so there can be no trap Q with
∅ 6= Q ⊆ R4.

(c) As the system is free-choice, we can apply Commoner’s theorem. We have that R4 is a proper siphon that
contain no proper trap at all, so especially it contains no initially marked trap, therefore the system is
not live.

Solution 5 (6 points)

With variables M,M ′ : S → N and X,Y : T → N, the algorithm constructs the following linear system of
equations:

M = M0 +N ·X
M ′ = M +N · Y
M ′ ≥M
Y (t) ≥ 1

By the assumption on the net, if the system has a solution M,M ′, X, Y then there exist σ, τ with σ = X,
τ = Y , t occurs in τ and M0

σ−→ M
τ−→ M ′. As M ′ ≥ M , the sequence στττ . . . is enabled at M0 and t occurs

infinitely often along this sequence

In the other direction, if t occurs infinitely often along some sequence, then by Dickson’s lemma, we obtain
markings M,M ′ and sequences σ, τ such that M0

σ−→M
τ−→M ′, M ′ ≥M and t occurs in τ . Then M,M ′, X =

σ, Y = τ is a solution to above system of equations.
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