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Chapter 1

Basic definitions

1.1 Preliminaries

Numbers

N, Z, Q and R denote the natural, rational, and real num-
bers.

Relations

Let X be a set and R ⊆ X ×X a relation. R∗ denotes the
transitive and reflexive closure of R. R−1 is the inverse of
R, that is, the relation defined by (x, y) ∈ R−1 ⇔ (y, x) ∈
R.

Sequences

A finite sequence over a setA is a mapping σ : {1, . . . , n} → A,
denoted by the string a1a2 . . . an, where ai = σ(i) for ev-
ery 1 ≤ i ≤ n, or the mapping ε : ∅ → A, the empty
sequence. The length of σ is n and the length of ε is 0.

An infinite sequence is a mapping σ : IN → A. We
write σ = a1a2a3 . . . with ai = σ(i).

The concatenation of two finite sequences or of a finite
and an infinite sequence is defined as usual. Given a finite
sequence σ, we denote by σω the infinite concatenation
σσσ . . ..

σ is a prefix of τ if σ = τ or σσ′ = τ for some se-
quence σ′.

9



10 CHAPTER 1. BASIC DEFINITIONS

The alphabet of a sequence σ is the set of elements of
A occurring in σ. Given a sequence σ over A and B ⊆ A,
the projection or restriction σ|B is the result of removing
all occurrences of elements a ∈ A \B in σ.

Vectors and matrices

Let A = {a1, . . . , an} be a finite set and let K be one of
N,Z,Q,R.

We represent a mapping X : A → K by the vector
(X(a1), . . . , X(an)). We identify the mapping X and its
vector representation.

Given vectorsX = (x1, . . . , xn) and Y = (y1, . . . , yn),
the (scalar) productX ·Y is the number x1y1+ . . .+xnyn
(we do not distinguish between row and column vectors!).
We write X ≥ Y to denote x1 ≥ y1 ∧ . . . ∧ xn ≥ yn,a nd
X > Y to denote x1 > y1 ∧ . . . ∧ xn > yn.

Let B = {b1, . . . , bm} be a finite set. A mapping
C : A×B → K is represented by the n×m matrix


C(a1, b1) C(a1, b2) · · · C(a1, bm)
C(a2, b1) C(a2, b2) · · · C(a2, bm)
· · · · · · · · · · · ·

C(an, b1) C(an, b2) · · · C(an, bm)


We also write C = (cij)i=1,...,n,j=1,...,m, where cij =
C(ai, bj).

LetX = (x1, . . . , xm) be a vector and letC be a n×m
matrix. The product C ·X is the vector Y = (y1, . . . , yn)
given by

y(i) = ci1x1 + . . .+ cimxm

and for X = (x1, . . . , xn) the product X · C is the vector
Y = (y1, . . . , ym) given by

y(i) = c1ix1 + . . .+ cnixn

Complexity Classes

We recall some basic notions of complexity theory. Formal
definitions can be found in standard textbooks.
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A program is deterministic if it only has one possible
computation for each input. A program is nondterministic
if it may execute different computations for the same input.

A program (deterministic or not) runs in f(n)-time for
a function f : N → N if for every input of length n (mea-
sured in bits) every computation takes at most f(n) time.
Given a set C of functions N → N (for example, C can
be the set of all polynomial functions), a program runs
in C-time if it runs in f(n) time for some function f(n)
of C. Often we speak of a “polynomial-time program” or
“exponential-time” program, meaning a program that runs
in time f(n) for some polynomial resp. exponential func-
tion f(n).

Similarly, a program needs f(n)-memory or f(n)-space
for a function f : N → N if it uses at most f(n) bits of
memory for every input of length n. The f(n) bits do not
include the memory needed to store the input. We speak
of “polynomial-space” or “exponential-space” programs.

Informally, a problem consists of a universe U of pos-
sible inputs, and a predicate P on U assigning to each
u ∈ U a value P (u) ∈ {0, 1}. For example, U can be
the set of all finite graphs, and P (u) the predicate with
P (u) = 1 iff u has a cycle.

A deterministic program solves a problem (U,P ) if it
terminates for every input u ∈ U and returns P (u).

A nondeterministic program solves a problem (P,U)
if for every input u ∈ U :

• if P (u) = 1 then at least one computation of the
program returns 1; and

• if P (u) = 0 then every computation of the program
returns 0.

Observe: if the program returns 1 then we know P (u) = 1,
otherwise we do not know anything.

• P is the class of problems that can be solved by
polynomial-time dterministic programs.

• NP is the class of problems that can be solved by
polynomial-time nondterministic programs.
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• PSPACE is the class of problems that can be solved
by polynomial-space determinstic programs.

• NPSPACE is the class of problems that can be solved
by polynomial-space nondterministic programs.

• EXPTIME is the class of problems that can be solved
by exponential-time deterministic programs.

• EXPSPACE is the class of problems that can be
solved by exponential-space deterministic programs.

We have

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE.

It is widely believed that all these inclusions are strict.
However, all we know for sure is the (rather trivial fact)
P ⊂ EXPTIME. We also know:

Theorem 1.1.1 [Savitch’s theorem]
NPSPACE = PSPACE.

A problem Π1 = (U1, P1) can be polynomially re-
duced to Π2 = (U2, P2) if there is a function f : U1 → U2

satisfying the following two properties:

• for every u1 ∈ U1: P1(u1) = 1 iff P2(f(u1)), and

• there is a polynomial-time deterministic program that
computes f .

For all the complexity classes above, if Π1 can be reduced
to Π2 and Π2 belongs to the class, then so does Π1.

A problem is hard for a complexity class if all prob-
lems in the class can be reduced to it. It is complete for the
class if it is hard for the class, and belongs to the class.

1.2 Syntax

Definition 1.2.1 (Net, preset, postset)
A net N = (S, T, F ) consists of a finite set S of places
(represented by circles), a finite set T of transitions dis-
joint from S (squares), and a flow relation (arrows) F ⊆
(S × T ) ∪ (T × S).
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t2t1 t3 t4

s1 s3 s5

s2 s4 s6

Figure 1.1: Graphical representation of the net N

The places and transitions of N are called elements or
nodes. The elements of F are called arcs.

Given x ∈ S ∪ T , the set •x = {y | (y, x) ∈ F} is
the preset of x and x• = {y | (x, y) ∈ F} is the postset
of x. For X ⊆ S ∪ T we denote •X =

⋃
x∈X

•x and X• =⋃
x∈X

x•.

Example. Let N = (S, T, F ) be the net

S = {s1, . . . , s6}
T = {t1, . . . , t4}
F = {(s1, t1), (t1, s2), (s2, t2), (t2, s1),

(s3, t2), (t2, s4), (s4, t3), (t3, s3),

(s5, t3), (t3, s6), (s6, t4), (t4, s5)}

Figure 1.1 shows the graphical representation of N .
For example we have •t2 = {s2, s3} and •S = S• = T .

Remark: Nets with empty S, T or F are allowed!

Definition 1.2.2 (Subnet)
N ′ = (S′, T ′, F ′) is a subnet of N = (S, T, F ) if

• S′ ⊆ S,

• T ′ ⊆ T , and

• F ′ = F ∩ ((S′ × T ′) ∪ (T ′ × S′)) (not F ′ ⊆ F ∩
((S′ × T ′) ∪ (T ′ × S′)) !).

Figure 1.2 shows some subnets and non-subnets of the net
of Figure 1.1.



14 CHAPTER 1. BASIC DEFINITIONS

Subnets Non−subnets

t3 t2 t3

t2

s1

s4s4

t2

s3s3

s1

t1t1

Figure 1.2: Subnets and non-subnets of the net of Figure
1.1

Definition 1.2.3 (Path, circuit)
A path of a net N = (S, T, F ) is a finite, nonempty se-
quence x1 . . . xn of nodes ofN such that (x1, x2), . . . , (xn−1, xn) ∈
F . We say that a path x1 . . . xn leads from x1 to xn.

A path is a circuit if (xn, x1) ∈ F and (xi = xj) ⇒
i = j for every 1 ≤ i, j ≤ n.

N is connected if (x, y) ∈ (F ∪F−1)∗ for every x, y ∈
S ∪ T , and strongly connected if (x, y) ∈ F ∗ for every
x, y ∈ S ∪ T .

Remarks:

• Every net with 0 or 1 node is strongly connected!

• If N is strongly connected then it is also connected.

Proposition 1.2.4 Let N = (S, T, F ) be a net.

(1) N is connected iff there are no two subnets (S1, T1, F1)
and (S2, T2, F2) of N such that

• S1 ∪ T1 6= ∅, S2 ∪ T2 6= ∅;
• S1 ∪ S2 = S, T1 ∪ T2 = T , F1 ∪ F2 = F ;
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• S1 ∩ S2 = ∅, T1 ∩ T2 = ∅.

(2) A connected net is strongly connected iff for every
(x, y) ∈ F there is a path leading from y to x.

Proof. Exercise. �

1.3 Semantics

Definition 1.3.1 (Markings)
Let N = (S, T, F ) be a net. A marking of N is a mapping
M : S → IN. Given R ⊆ S we write M(R) =

∑
s∈R

M(s).

A place s is marked at M if M(s) > 0. A set of places R
is marked at M if M(R) > 0, that is, if at least one place
of R is marked at M .

Instead of mappings S → IN sometimes we use vec-
tors. For this we fix a total order on the places of N . With
this convention we can represent a marking M : S → IN
as a vector of dimension |S|.

Markings are graphically represented by drawing black
dots (“tokens”) on the places.

Definition 1.3.2 (Firing rule, dead markings)
A transition is enabled at a marking M if M(s) ≥ 1 for
every place s ∈ •t. If t is enabled, then it can occur or fire,
leading from M to the marking M ′ (denoted M t−→ M ′)
given by:

M ′(s) =


M(s)− 1 if s ∈ •t \ t•
M(s) + 1 if s ∈ t• \ •t
M(s) otherwise

A marking is dead if it does not enable any transition.

Example 1.3.3 LetM be the marking of the netN in Fig-
ure 1.1 given by M(s1) = M(s4) = M(s5) = 1 and
M(s2) = M(s3) = M(s6) = 0. We denote this marking
by the vector (1, 0, 0, 1, 1, 0).
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The marking enables transitions t1 and t3, because
•t1 = {s1} and •t3 = {s4, s5}. Transition t2 is not en-
abled, because M(s2) = 0. Transition t4 is not enabled,
because M(s6) = 0. We have

(1, 0, 0, 1, 1, 0)
t1−→ (0, 1, 0, 1, 1, 0)

(1, 0, 0, 1, 1, 0)
t3−→ (1, 0, 1, 0, 0, 1)

Definition 1.3.4 (Firing sequence, reachable marking)
Let N = (S, T, F ) be a net and let M be a marking of N .
A finite sequence σ = t1 . . . tn is enabled at a marking M
if there are markings M1,M2, . . . ,Mn such that M t1−→
M1

t2−→M2
t3−→ . . .

tn−→Mn. We write M σ−→Mn. The
empty sequence ε is enabled at any marking and we have
M

ε−→M .
If M σ−→ M ′ for some markings M,M ′ and some

sequence σ, then we write M ∗−→ M ′ and say that M ′ is
reachable from M . [M〉 denotes the set of markings that
are reachable from M .

An infinite sequence σ = t1t2 . . . is enabled at a mark-
ing if there are markings M1,M2, . . . such that M t1−→
M1

t2−→M2 −→ . . .

Example 1.3.5 Let N be the net of Figure 1.1 and let
M = (1, 0, 0, 1, 1, 0) be a marking of N . We have

(1, 0, 0, 1, 1, 0)
t1−−→ (0, 1, 0, 1, 1, 0)

t3−−→ (0, 1, 1, 0, 0, 1)
↓ t2

(1, 0, 0, 1, 0, 1)
t4−−→ (1, 0, 0, 1, 1, 0)

So M enables the finite sequence t1 t3 t2 t4 and the infinite
sequence (t1 t3 t2 t4)

ω.

Proposition 1.3.6 A (finite or infinite) sequence σ is en-
abled at M iff every finite prefix of σ is enabled at M .

Proof. Easy exercise. �

The following simple lemma plays a fundamental role
in many results about Petri nets.
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Lemma 1.3.7 [Monotonicity lemma]
Let M and L be two markings of a net.

(1) If M σ−→ M ′ for a finite sequence σ, then (M +
L)

σ−→ (M ′ + L) for every marking L.

(2) If M σ−→ for an infinite sequence σ, then (M +
L)

σ−→ for every marking L.

Proof. (1): by induction on the length of σ.
Basis: σ = ε. ε is enabled at any marking.
Step: Let σ = τt (t transition) such that M τ−→ M ′′ t−→
M ′. By induction hypothesis (M + L)

τ−→ (M ′′ + L).
From the firing rule andM ′′ t−→M ′ we get (M ′′+L)

t−→
(M ′ + L). So (M + L)

τt−→ (M ′ + L).

(2): We show that every finite prefix of σ is enabled at
M + L. The result then follows from Proposition 1.3.6.
By Proposition 1.3.6, every finite prefix of σ is enabled at
M . That is, for every finite prefix τ of σ there is a marking
M ′ such that M τ−→ M ′. By (1) we get (M + L)

τ−→
(M ′ + L), and we are done. �

Definition 1.3.8 (Petri nets)
A Petri net, net system, or just a system is a pair (N,M0)
whereN is a connected netN = (S, T, F ) with nonempty
sets of places and transitions, and an initial markingM0 : S →
IN. A marking M is reachable in (N,M0) or a reachable
marking of (N,M0) if M0

∗−→M .

Definition 1.3.9 (Reachability graph)
The reachability graph G of a Petri net (N,M0) where
N = (S, T, F ) is the directed, labeled graph satisfying:

• The nodes ofG are the reachable markings of (N,M0).

• The edges of G are labeled with transitions from T .

• There is an edge from M to M ′ labeled by t iff
M

t−→ M , that is, iff M enables t and the firing
of t leads from M to M ′.
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REACHABILITY-GRAPH((S, T, F,M0))
1 (V,E, v0) := ({M0}, ∅,M0);
2 Work := {M0};
3 while Work 6= ∅
4 do select M from Work ;
5 Work := Work \ {M};
6 for t ∈ enabled(M)
7 do M ′ := fire(M, t);
8 if M ′ /∈ V
9 then V := V ∪ {M ′}

10 Work := Work ∪ {M ′};
11 E := E ∪ {(M, t,M ′)};
12 return (V,E, v0)

Figure 1.3: Algorithm for computing the reachability
graph

The algorithm of Figure 1.3 computes the reachability graph.
It uses two functions:

• enabled(M): returns the set of transitions enabled
at M .

• fire(M, t): returns the markingM ′ such thatM t−→M ′.

The set Work may be implemented as a stack, in which
case the graph will be constructed in a depth-first manner,
or as a queue for breadth-first. Breadth first search will
find the shortest transition path from the initial marking to
a given (erroneous) marking. Some applications require
depth first search.



Chapter 2

Modelling with Petri
nets

2.1 A buffer of capacity n

We model a buffer with capacity for n items. Figure 2.1
shows the Petri net for n = 3. The model consists of n

Cell−1−full Cell−2−full Cell−3−full

Cell−3−emptyCell−2−emptyCell−1−empty

s1 s5

t3t2t1

s6s4s2

t4

s3

Figure 2.1: A 3-buffer

cells, each of them with capacity for one item. The ad-
dition of a new item is modeled by the firing of t1. The
firing of transition ti models moving the item in cell i− 1
to cell i. Firing tn+1 models removing one item. Observe
that the buffer is concurrent: there are reachable markings
at which transitions t1 and tn+1 can occur independently
of each other, that is, an item can be added while another
one is being removed.

Figure 2.2 shows the reachability graph of the buffer
with capacity 3. By inspection of the reachability graph

19
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(01 01 01)

(01 01)

01 01)

(01 01 01)

t2

t3

t1

t1
t4

t1

t2

t4

t3t4

t1

t4

Figure 2.2: Reachability graph of the 3-buffer

we can see that the following properties hold:
• Consistency: no cell is simultaneously empty and full

(that is, no marking puts tokens on si and si+1 for i =
1, 2, 3).
• 1-boundedness: every reachable marking puts at most

one token in a given place.
• Deadlock freedom: every reachable marking has at least

one successor marking.
Even more: every cell can always be filled and emptied
again (every transition can occur again).
• Capacity 3: the buffer has indeed capacity 3, that is,

there is a reachable marking that puts one token in s2, s4, s6.
• The initial marking is reachable from any reachable mark-

ing (that is, it is always possible to empty the buffer).
• Between any two reachable markings there is a path of

length at most 6.

2.2 Train tracks

Four cities are connected by unidirectional train tracks build-
ing a circle. Two trains circulate on the tracks. Our task
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t1

s2

t2t3

s4

t4

s1

l3

l1

s3

l4 l2

Figure 2.3: Train tracks (first version)

is to ensure that it will never be the case that two trains
occupy the same track.

Figure 2.3 shows a solution of the problem modeled as
a Petri net. the four tracks are modeled by places s1, . . . , s4.
A token on si means that there is train in the i-th track.

The four control places l1, . . . , l4 guarantee that no
reachable marking puts more than one token on si. This
property can be proven by means of the reachability graph
shown in Figure 2.4. Since every reachable marking puts
at most one token on a place, we denote a marking by the
set of places marked by it. For instance, we denote by
{l1, s2, l3, s4} the marking that puts a token on l1, s2, l3
and s4.

Consider now a slightly different system. We have 8
cities connected in a circuit, and three trains use the tracks.
To increase safety, we have to guarantee that there always
is at least one empty track between any two trains.

The Petri net of Figure 2.5 is a solution of the prob-
lem: The reader can construct the reachability graph and
show that the desired property holds. However, the graph
is pretty large!
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s2 l3

s2 l3

s2 l3

l2 s3

l2 s3

s3 l2

t3

t4

t4

t3t1

t1

t2

t2

{l1 s4}

{l1 s4} {s1 l4}

{s1 l4}

{l1 l4} {s1 s4}

Figure 2.4: Reachability graph of the Petri net of Figure
2.3

Figure 2.5: Train tracks (second version)
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2.3 Dining philosophers

Four philosophers sit around a round table. There are forks
on the table, one between each pair of philosophers. The
philosophers want to eat spaghetti from a large bowl in
the center of the table (see the top of Figure 2.6). Un-
fortunately the spaghetti is of a particularly slippery type,
and a philosopher needs both forks in order to eat it. The
philosophers have agreed on the following protocol to ob-
tain the forks: Initially philosophers think about philoso-
phy, when they get hungry they do the following: (1) take
the left fork, (2) take the right fork and start eating, (3)
return both forks simultaneously, and repeat from the be-
ginning. Figure 2.6 shows a Petri net model of the system.

Two interesting questions about this systems are:

• Can the philosophers starve to death (because the
system reaches a deadlock)?

• Will an individual philosopher eventually eat, as-
suming she wants to?

2.4 A logical puzzle

A man is travelling with a wolf, a goat, and a cabbage. The
four come to a river that they must cross. There is a boat
available for crossing the river, but it can carry only the
man and at most one other object. The wolf may eat the
goat when the man is not around, and the goat may eat the
cabbage when unattended (see Figure 2.7)

Can the man bring everyone across the river without
endangering the goat or the cabbage? And if so, how?

We model the system with a Petri net. The puzzle
mentions the following objects: Man, wolf, goat, cabbage,
boat. Both can be on either side of the river. It also men-
tions the following actions: Crossing the river, wolf eats
goat, goat eats cabbage.

Objects and their states are modeled by places. (We
can omit the boat, because it is always going to be on the
same side as the man.) Actions are modeled by transitions.
Figure 2.7 shows the transitions for the three actions.
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4

1 2

3

fork

fork

fork fork

l1

r1

b1
thinking

eating

r2

l2

b2
eating

thinking

l3

r3

b3

thinking

eating

r4

l4

b4

eating

thinking

Figure 2.6: Petri net model of the dining philosophers



2.4. A LOGICAL PUZZLE 25

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WLR

MLR

CLR

GLR

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WRL

MRL

CRL

GRL

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WL

ML

WGL WGR

CGL CGR

Figure 2.7: Transitions modelling the actions of the puzzle



26 CHAPTER 2. MODELLING WITH PETRI NETS

q4

q3

v1

v4

v3

q2

v6

q1

u1u6

u3

u4

m1 = t

m2 = fp1

p2

p3

p4

hold = 2

m2 = t

u5

hold = 1

v5

u2 v2

m1 = f

Figure 2.8: Petri net model of Peterson’s algorithm

2.5 Peterson’s algorithm

Peterson’s algorithm is a well-known solution to the mu-
tual exclusion problem for two processes.

var m1,m2 : {false, true} (init false);
hold : {1, 2};

while true do
m1 := true;
hold := 1;
await(¬m2 ∨ hold = 2);
(critical section);
m1 := false;

od

while true do
m2 := true;
hold := 2;
await(¬m1 ∨ hold = 1);
(critical section);
m2 := false;

od

The Petri net of Figure 2.8 models this algorithm. The
variable mi is modeled by the places mi = true and
mi = false . A token on mi = true means that at the
current state of the program (marking) the variable mi has
the value true (so the Petri net must satisfy the property
that no reachable marking puts tokens on both mi = true
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and mi = false at the same time). Variable hold is mod-
eled analogously.

A token on p4 (q4) indicates that the left (right) pro-
cess is in its critical section. Mutual exclusion holds if no
reachable marking puts a token on p4 and q4. The Petri net
has 20 reachable markings.

2.6 The action/reaction protocol

Two agents must repeatedly exchange informations. When
an agent requests an information from the other one, it
must wait for an answer before proceeding. The task is
to design a protocol for the exchanges. In particular, the
protocol must guarantee that it is not possible to reach a
situation in which both processes are waiting from an an-
swer from the other one.

A first attempt at a solution is shown in Figure 2.9. Re-
quests are modeled by the Action transitions, and replies
by the Reaction transitions. However, this solution can
reach a deadlock: both processes can issue a request si-
multaneously, after which they wait forever for an answer.
We call such a situation a crosstalk. Figure 2.10 shows a
second attempt. Now processes can detect that a crosstalk
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has taken place. If a process detects a crosstalk, it answers
the request of its partner, and then continues to wait for an
answer to its own request. This solution has no deadlocks
(prove it!), but it exhibits the following problem: a non-
cooperative process can always get answers to its requests,
without ever answering any request from its partner. The
solution is deadlock free, but unfair. The third attempt
(Figure 2.11) is fair. If a process detects a crosstalk, then
it answers the request of its partner, as before, but then it
moves to a state in which it is only willing to receive an
answer to its own question. Unfortunately, the system has
again a deadlock (can you find it?).

The final attempt (Figure 2.12) is both deadlock-free
and fair. The protocol works in rounds. A “good” round
consists of a request and an answer. In a “bad” round both
processes issue a request and they reach a crosstalk situa-
tion. Such a round continues as follows: both processes
detect the crosstalk, send each other an “end-of-round”
signal, wait for the same signal from their partner, and then
move to their initial states.

The solution is not perfect. In the worst case there are
only bad rounds, and no requests are answered at all.
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2.7 Some variants of the main model

Definition 2.7.1 (Nets with place capacities)
A net with capacities N = (S, T, F,K) consists of a net
(S, T, F ) and a mapping K : S → IN.
A transition t is enabled at a marking M of N if

– M(s) ≥ 1 for every place s ∈ •t and
– M(s) < K(s) for every place s ∈ t• \ •t

The notions of firing, Petri net with capacities, etc. are
defined as in the capacity-free case.

Definition 2.7.2 (Nets with weighted arcs)
A net with weighted arcs N = (S, T,W ) consists of two
disjoint sets of places and transitions and a weight function
W : (S × T ) ∪ (T × S) → IN. A transition t is enabled
at a marking M of N if M(s) ≥W (s, t) for every s ∈ S.
If t is enabled then it can occur leading to the marking M ′

defined by

M ′(s) = M(s) +W (t, s)−W (s, t)

for every place s.
In Petri nets with weighted arcs, the preset and postset

of a transition is not a set, but a multiset, i.e., a set that
can contain multiple copies of an object. If, for example,
W (s, t) = 3, then the preset of t contains 3 copies of the
place s. Other notions are defined as in the standard model.

Definition 2.7.3 (Nets with inhibitor arcs)
A net with inhibitor arcs N = (S, T, F, I) consists of two
disjoint sets of places and transitions, a set F ⊆ (S×T )∪
(T × S) of arcs, and a set I ⊆ S × T , disjoint with F , of
inhibitor arcs. A transition t is enabled at a marking M
of N if M(s) > 0 for every place s such that (s, t) ∈ F ,
and M(s) = 0 for every place s such that (s, t) ∈ I . If
t is enabled then it can occur leading to the marking M ′,
defined as for standard Petri nets.

Definition 2.7.4 (Nets with reset arcs)
A net with reset arcs N = (S, T, F,R) consists of two
disjoint sets of places and transitions, a set F ⊆ (S×T )∪
(T × S) of arcs, and a set R ⊆ S × T , disjoint with F , of



2.8. SOME SYTEMS MODELED BY PETRI NETS WITH WEIGHT ARCS31

reset arcs. A transition t is enabled at a markingM ofN if
M(s) > 0 for every place s such that (s, t) ∈ F ∪R. If t is
enabled then it can occur leading to the marking obtained
after the following operations:

• Remove one token from every place s such that (s, t) ∈
F .

• Remove all tokens from every place s such that (s, t) ∈
R.

• Add one token to every place s such that (t, s) ∈ F .

2.8 Some sytems modeled by Petri nets
with weight arcs

2.8.1 Readers and writers

The Petri net with weighted arcs of Figure 2.13 models
a solution to the “readers and writers” problem. A set of
processes has access to a database. Processes can read con-
currently, but a process can only write if no other processes
reads nor writes.

Exercise: Modify the Petri net so that reading pro-
cesses can not indefinitely prevent another process from
writing.

2.8.2 Population protocols

Population protocols are a model of distributed compu-
tation by anonymous, identical finite-state agents. While
they were initially introduced to model networks of pas-
sively mobile sensors, they capture the essence of distributed
computation in diverse areas such as trust propagation and
chemical reactions.

We introduce them by means of several examples. Then
we present the formal definitions, and show how they can
be translated into Petri nets.

The Black Ninjas. The Black Ninjas are an ancient se-
cret society of warriors. It is so secret that its members do
not even know each other and how many they are. When
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there is a matter to discuss, Sensei, the founder of the so-
ciety, asks the ninjas to meet at night, preferably during a
storm as it minimizes the chance of being surprised by the
enemy.

As it happens, all ninjas have just received a note ask-
ing them to meet in a certain Zen garden at midnight, wear-
ing their black uniform, in order to decide whether they
should attack a nearby castle at dawn. The decision is
taken by majority, and in the case of a tie the ninjas will
not attack. All ninjas must decide their vote in advance,
the only purpose of the meeting is to compute the final
outcome.

When the ninjas reach the garden in the gloomy night,
dark clouds cover the sky as rain pours vociferously. The
weather is so dreadful that it is impossible to see or hear
anything at all. For this reason, voting procedures based
on visual or oral communication are hopeless. Is there a
way for the ninjas to conduct their vote in spite of these
adverse conditions?
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Rule Nr. Rule
1 AY,AN 7→PN,PN

2 Aα,Pβ 7→Aα,Pα α, β ∈ {Y,N}

Table 2.1: A first protocol for computing majority.

A first protocol. Sensei has foreseen this situation and
made preparations. The note sent to the ninjas contains
detailed instructions on how to proceed. Each ninja must
wander randomly around the garden. Two ninjas that hap-
pen to bump into each other exchange information using
touch according to the following protocol. Each ninja main-
tains two bits of information:

• the first bit indicates whether the ninja is currently
active (A) or passive (P); and

• the second bit indicates the current expectation of
each ninja on the final outcome of the vote: yes, we
will attack (Y) or no, we will not attack (N).

This gives four possible states for each ninja: AY, AN,
PY, PN. Initially the ninjas set their first bit to A, i.e.,
they are all active, and their second bit to their vote. State
changes obey interaction rules or transitions of the form
p, q 7→ p′, q′, meaning that if the interacting ninjas are
in states p and q, respectively, they move to states p′ and
q′. Sensei specifies two rules, shown on Table 2.1, with
the implicit assumption that for any combination of states
not covered by the rules, the ninjas must simply keep their
current states.

A second protocol. The protocol works fine for a time,
but then disaster strikes. At one gathering there is an equal
number of Y-ninjas and N-ninjas. In this case — and only
in this case — the protocol is incorrect. There is an exe-
cution in which the ninjas do not reach consensus, and af-
ter which the states of the ninjas cannot change anymore.
At dawn only some ninjas attack, they are decimated, and
Sensei commits harakiri.
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Rule Nr. Rule
1 AY,AN 7→PN,PN

2 Aα,Pβ 7→Aα,Pα α, β ∈ {Y,N}
3 PN,PY 7→PN,PN

Table 2.2: A second protocol for computing majority.

The newly elected Sensei II analyzes the problem and
quickly comes up with a repair for the protocol. It is shown
in Table 2.2: a new rule PY,PN 7→ PN,PN is added.
If all ninjas become passive, which can only happen in
the case of a tie, then the new rule guarantees that an N-
consensus is eventually reached.

A third protocol. Again, the new protocol works fine . . .
until it doesn’t. The story repeats itself: At dawn no con-
sensus has been reached, only some ninjas attack, they are
decimated. The successor, Sensei III, considers the gen-
eral scenario in which Y has a majority of only one ninja,
and finds the following explanation: In this situation, the
protocol reaches with high probability a configuration with
one single ninja in state AY and many ninjas in states PN.
There is now a struggle between the single AY ninja, who
turns PN-ninjas to PY using the second rule, against the
many PN-ninjas, who turn PY-ninjas back to PN using the
new rule. The AY-ninja eventually “wins”, and consensus
Y is reached, but only after she turns all PN-ninjas to PY

before any of the PN-ninjas converts any of them back to
PY.

Sensei III wants a new protocol with a clean design.
Since ties are the source of all problems, she decides that
the protocol should explicitly deal with them. So, apart
from being active or passive, ninjas can now have a more
refined expectation of the outcome: Y, N, and T (for “tie”).
The protocol is shown on Table 2.3. When two active
ninjas meet, only one of them becomes passive, and both
change their expectation in the natural way. For example,
if the expectations are Y and T, then the ninja with expec-
tation T changes it to Y. This explains rules 1 to 4. Rule 5
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Rule Nr. Rule
1 AY,AT 7→AY,PY

2 AY,AN 7→AT,PT

3 AT,AN 7→AN,PN

4 AT,AT 7→AT,PT

5 Aα,Pβ 7→Aα,Pα α, β ∈ {Y,T,N}

Table 2.3: A third protocol for computing majority.

is the usual one: passive ninjas adopt the expectation of
active ninjas.

Formal definition of population protocols. As mentioned
in the introduction, a population protocol consists of a set
of statesQ and a set of transitions T ⊆ Q2×Q2. A transi-
tion

(
(q1, q2), (q3, q4)

)
∈ T is denoted (q1, q2) 7→ (q3, q4).

A configuration is a multiset of states. A configuration, say
C, such that C(q1) = 2 and C(q2) = 1, indicates that cur-
rently there are two agents in state q1 and one agent in state
q2. The connection to Petri nets is immediate: The Petri
net modeling a protocol has one place for each state, and
one transition for every transition of the protocol. If tran-
sition t of the Petri net models (q1, q2) 7→ (q3, q4), then
• = Hq1, q2I, and t• = Hq3, q4I, where Hq1, q2I. An agent
in state q is modeled by a token in place q. A configuration
C with C(q) agents in state q is modeled by the marking
putting C(q) tokens in place q for every q ∈ Q.

Figure 2.14 shows the Petri net for the first two major-
ity protocols. Transitions t such that •t = t• (whose firing
does not change the current marking) have been omitted.
Population protocols are designed to compute predicates
ϕ : Nk → {0, 1}. We first give an informal explanation
of how a protocol computes a predicate, and then a formal
definition using Petri net terminology. A protocol forϕ has
a distinguished set of input states {q1, q2, . . . , qk} ⊆ Q.
Further, each state of Q, initial or not, is labeled with an
output, either 0 or 1. Assume for example k = 2. In or-
der to compute ϕ(n1, n2), we first place ni agents in qi for
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i = 1, 2, and 0 agents in all other states. This is the initial
configuration of the protocol for the input (n1, n2). Then
we let the protocol run. The protocol satisfies that in every
fair run starting at the initial configuration (fair runs are
defined formally below), eventually all agents reach states
labeled with 1, and stay in such states forever, or they reach
states of labeled with 0, and stay in such states forever. So,
intuitively, in all fair runs all agents eventually “agree” on
a boolean value. By definition, this value is the result of
the computation, i.e, the value of ϕ(n1, n2).

Formally, and in Petri net terms, fix a Petri net N =
(S, T,W ) with |•t| = 2 = |t•| for every transition t. Fur-
ther, fix a set I = {p1, . . . , pk} of input places, and a func-
tion O : P → {0, 1}. A marking M of N is a b-consensus
ifM(p) > 0 impliesO(p) = b. A b-consensusM is stable
if every marking reachable from M is also a b-consensus.
A firing sequence M0

t1−−→M1
t2−−→M2 · · · of N is fair if

it is finite and ends at a deadlock marking, or if it is infinite
and the following condition holds for all markings M,M ′

and t ∈ T : if M t−→M ′ and M = Mi for infinitely many

i ≥ 0, then Mj
tj+1−−−→Mj+1 = M

t−→M ′ for infinitely
many j ≥ 0. In other words, if a fair sequence reaches a
marking infinitely often, then all the transitions enabled at
that marking will be fired infinitely often from that mark-
ing. A fair firing sequence converges to b if there is i ≥ 0
such that Mj is a b-consensus for every marking j ≥ i of
the sequence. For every v ∈ Nk with |v| ≥ 2 let Mv be
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the marking given by Mv(pi) = vi for every pi ∈ I , and
Mv(p) = 0 for every p ∈ P \ I . We call Mv the initial
marking for input v. The net N computes the predicate
ϕ : Nk → {0, 1} if for every v ∈ Nk, every fair firing
sequence starting at Mv converges to b.

2.9 Some Petri net models taken from
the literature

Petri nets have multiple applications. To complete our col-
lection of models, we present three examples taken from
scientific papers in three different areas: biology, manu-
facturing, and business administration.

A model of a biological system. Petri nets are often used
to model biological systems. In these applications, to-
kens represent molecules or cells, and transitions corre-
spond to chemical reactions or biological processes. Fig-
ure 2.15, taken from the paper “Executable cell biology”,
by J. Fisher and T.A. Henzinger (Nature biotechnology,
2007), shows in part (a) a simple, standard weighted Petri
net. Part ( b ) shows a simplified logical regulatory graph
for the biosynthesis of tryptophan in E. coli. Each node of
the regulatory graph represents an active component: tryp-
tophan (Trp), the active enzyme (TrpE) and the active re-
pressor (TrpR). The node marked by a rectangle accounts
for the import of Trp from external medium. All nodes
are binary (that is, can take the value 0 or 1), except Trp,
which is represented by a ternary variable (taking the val-
ues 0, 1, 2). Arrows represent activation and bars denote
inhibition (inhibitor arcs). Part ( c ) shows Petri net of the
Trp regulatory network. Each of the four components of
part (b) is represented by two complementary places and
all the different situations that lead to a change of the state
of the system are modeled by one of the nine transitions
(t1, . . . , t9).

A model of a flexible manufacturing system. Figure
2.16, taken from the paper “Optimal Petri-Net-Based Polynomial-
Complexity Deadlock-Avoidance Policies for Automated
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A hierarchical structure allows one to view a system at different levels 
of detail (e.g., whole organism, tissues, cells; Fig. 4a). Models of this 
kind have been used to model T-cell activation and differentiation8,9, 
as well as C. elegans development10,11,13,14.

Interacting state machine models are particularly suitable for 
describing mechanistic models of biological systems that are well 
understood qualitatively. Such models do not require quantitative data 
relating to the number of molecules and reaction rates. They allow the 
creation of abstract high-level models and the application of strong 
analysis tools such as model checking. The possibility of hierarchical 
structuring is extremely useful in cases where the behavior is distrib-
uted over many cells and where multiple copies of the same process 
are executed in parallel.

There are many different languages to express interacting state 
machine models. Using the visual language (Box 2) of Statecharts15, 

Kam et al. developed a model that described the various stages in 
the life span of a T-cell and the transitions between these stages8. 
The initial T-cell model was followed by a more extensive animated 
model of T-cell differentiation in the thymus9. A major advantage of 
Statecharts compared to other state-based formalisms, such as Reactive 
Modules16, is the fact that this language is visual. The user can draw 
states and state changes and the tool automatically creates an execut-
able model, enabling relatively easy and intuitive programming even 
for nonspecialists. Efroni et al. used reactive animation (Box 2)9,53, 
where a reactive system drives the display of animation software to 
visualize the model. These studies were followed by ongoing efforts to 
model C. elegans development10,11,13,14, which used Statecharts and a 
visual language called Live Sequence Charts54 and more recently a lan-
guage called Reactive Modules16 that supports compositional analysis 
techniques (Box 2).
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Figure 2.15: Petri net of the Trp regulatory network

Manufacturing Systems” by Xing et al. (IEEE Trans. on
Systems, Man, and Cybernetics, 2009) shows a flexible
manufactuting cell with has four machines, modeled by
places p20 to p23, and three robots, modeled by places p24
to p26. Tokens model parts, and so, for example, a token
at p20 means that the part represented by the token is cur-
rently being processed at the first machine. Each machine
can hold two parts at the same time, and each robot can
hold one part.

A model of a business process. Figure 2.16, taken from
the paper “Business process management as the Killer App
for Petri nets” by van der Aalst (Software and Systems
Modeling, 2014), shows a Petri net model of the life-cycle
of a request for compensation. A transition may carry a
label referring to some activity. Transitions without a label
are silent.

2.10 Analysis problems

We introduce a number of properties which capture, in
an abstract way, the types of properties we are interested
about when analyzing one of the models of the chapter.
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saturated. Similarly, the firing of t6 requires r2 and leads θ1

saturated.
If a marked S3PR contains ξ-resources, the controller given

in Definition 7 cannot guarantee that the controlled system is
live. Moreover, note that a ξ-resource is related with many
MPRT-circuits, i.e., it is contained in at least two MPRT-
circuits. To obtain a deadlock-free controller for this kind of
Petri-net models in the following, we will first reduce Petri-net
models by ξ-resources so that the reduced ones do not contain
any ξ-resources but still fall into the class of S3PRs. By apply-
ing the design method for optimal polynomial-complexity DAP
to the reduced models, a suboptimal polynomial-complexity
DAP for a general S3PR is obtained.

Definition 8: Let (N,M0) = (P ∪ P 0 ∪ PR, T, F,M0) be
a marked S3PR and r a ξ-resource of (N,M0). The reduced
model of (N,M0) on r is a Petri net

(N(r),MA0) = (PA ∪ P 0 ∪ PAR, TA, FA,MA0)

which can be obtained by the following three steps.

Step 1) Delete the resource place r and its related arcs from
N , and let PAR = PR \ {r}.

Step 2) For each transition t ∈ P •
AR ∩ •r, for example,

r1 ∈ PAR such that (r1, t) ∈ F and (t, r) ∈ F ,
delete (r1, t) from S3PR. Let ps =(p) t. If |p•s| =
1, then ∀ts ∈ •ps, add (r1, ts) if (ts, r1) /∈ F and
delete (ts, r1) if (ts, r1) ∈ F . If |p•s| = k > 1, let
p•s = {t1, t2, . . . , tk} and (r)ti = ri, i = 1, 2, . . . , k,
and then, replace ps with k operation places
and, ∀ts ∈ •ps, with k transitions, i.e., delete
ps and its related arcs and add k operation
places, denoted as ps1, ps2, . . . , psk. Let ts ∈ •ps

and ps0 =(p) ts. Delete ts and its related arcs,
add k transitions, denoted as ts1, ts2, . . . , tsk, (in
which case, we will say that ts is separable
and is separated into ts1, ts2, . . ., and tsk) and
add arcs (ps0, tsi), (tsi, psi), (psi, ti), (ri, tsi), and
(tsi, rs), i = 1, 2, . . . , k. If for a resource place r′

and a transition t′ such that (r′, t′) and (t′, r′) exist
at the same time, then delete (r′, t′) and (t′, r′). Let
TS ⊆ T denote the set of all separable transitions
in N .

Step 3) After steps 1) and 2), the sets of the existing opera-
tion places, transitions, and arcs are denoted as PA,
TA, and FA, respectively. MA0 is the initial marking
of N(r), under which only places in P 0 ∪ PAR are
marked as in (N,M0).

The transition set T of N , based on the separation, can be
divided into two parts: TS and T \ TS. Correspondingly, all
transitions in N(r) can be divided into two sets: T1(r) and
T2(r), where T1(r) is the set of transitions that are also in N (in
this case, T1(r) = T \ TS, and we will use the same symbol
to denote the same transition in two sets) and T2(r) is the set
of all transitions that are obtained by separating some separable
transitions in TS.

Note that in a reduced Petri-net model N(r) some transitions
have no input and output resource places. For such a transition,

Fig. 2. Petri-net model (N, M0) of an flexible manufacturing cell.

we can consider its input and output operation places as one
operation place because they use the same resource type. This
way, (N(r),MA0) can be considered as a marked S3PR, in
which the concept of MPRT-circuits can be used. Thus, the
conclusions in (N,M0) hold in (N(r),MA0). To be pointed out
later, the reduction procedure can be repeated for any number
of times, and the reduced model will remain as S3PR. Thus, if
R(θ1) ∩ R(θ2) has multiple resources, we can reduce them one
by one to an S3PR without ξ-resources.

Example 2: The flexible manufacturing cell considered in
[4] has four machines m1−m4. Each machine can hold two
parts at the same time. Moreover, the cell contains three ro-
bots r1, r2, and r3, and each of them can hold one part.
Its Petri-net model (N,M0) is shown as in Fig. 2. The
set of resource places is R = {m1,m2,m3,m4, r1, r2, r3} =
(p20, p21, p22, p23, p24, p25, p26). The capacities of resources
are Ψ(mi) = 2, i = 1, 2, 3, 4, and Ψ(ri) = 1, i = 1, 2, 3. β1 =
t12p22t18p25t12 and β2 = t13p25t17p23t13 are two MPRT-
circuits, and R(β1) ∩ R(β2) = {p25} = {r2}. p25(r2) is a
ξ-resource and is used five times in the system. Reducing
(N,M0) on r2 is to delete places p25 and its related arcs from
Fig. 2 and delete and add some arcs based on Definition 8.
The reduced system Petri-net model (N(r2),MA0) is shown
in Fig. 3 and is still an S3PR.

If (N(r),MA0) does not contain ξ-resources, one can derive
its optimal DAP with polynomial complexity ρ∗A, and the
controlled reduced Petri-net model ρ∗A‖(N(r),MA0) is live.
Thus, it can be used as a live supervisor for (N,M0) under the
policy defined in the following.

Definition 9: Let (N,M0) = (P ∪ P 0 ∪ PR, T, F,M0) be a
marked S3PR and r a ξ-resource. (N(r),MA0) is a reduced
Petri-net model on r and does not contain ξ-resources. ρ∗A is the
optimal DAP with polynomial complexity for (N(r),MA0).
Define a supervisory policy ζ for (N,M0), as follows.

∀t ∈ T \ TS, ζ permits firing of t in (N,M0) ⇔ t can be
fired in ρ∗A‖(N(r),MA0). t fires in (N,M0) and (N(r),MA0)
at same time.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 4, 2009 at 02:37 from IEEE Xplore.  Restrictions apply.

Figure 2.16: Petri net model of a flexible manufacturing
system

Figure 2.17: Petri net model of a business process
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We assume that nets have at least one place and one
transition.

Definition 2.10.1 (System properties)
Let (N,M0) be a Petri net.

(N,M0) is deadlock free if every reachable marking
enables at least one transition (that is, no reachable mark-
ing is dead).

(N,M0) is live if for every reachable marking M and
every transition t there is a marking M ′ ∈ [M〉 that en-
ables t. (Intuitively: every transition can always fire again).

(N,M0) is bounded, if for every place s there is a
number b ≥ 0 such that M(s) ≤ b for every reachable
marking M . M0 is a bounded marking of N if (N,M0) is
bounded. The bound of a place s of a bounded Petri net
(N,M0) is the number

max{M(s) |M ∈ [M0〉}

(N,M0) is b-bounded if every place has bound b.

In these notes we study the following problems:

• Deadlock freedom: is a given Petri net (N,M0)
deadlock-free?

• Liveness: is a given Petri net (N,M0) live?

• Boundedness: is a given Petri net (N,M0) bounded?

• b-boundedness: given b ∈ N and a Petri net (N,M0),
is (N,M0) b-bounded?

• Reachability: given a Petri net (N,M0) and a mark-
ing M of N , is M reachable?

• Coverability: given a Petri net (N,M0) and a mark-
ingM ofN , is there a reachable markingM ′ ≥M?

There are some simple connections between these prob-
lems:

Proposition 2.10.2

(1) Liveness implies deadlock freedom.
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(2) If (N,M0) is bounded then there is a number b such
that (N,M0) is b-bounded.

(3) If (N,M0) is bounded, then it has finitely many reach-
able markings.

Proof. (1) follows immediately from the definitions. (2)
and (3) follow from the definitions and from the fact that a
Petri net has finitely many places. �

Sometimes we also use the following notion

Definition 2.10.3 (Well-formed nets)
A net N is well formed if there is a marking M0 such that
the Petri net (N,M0) is live and bounded.

and consider the following problem

• Well-formedness: is a given net well formed?
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Part II

Analysis Techniques for
Petri Nets
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Chapter 3 shows (sometimes without proofs) that Deadlock-
freedom, Liveness, Boundedness, b-Boundedness, Cov-
erability, and Reachability are all decidable. The deci-
sion procedures for these problems have high complexity,
but, at the same time, results of complexity theory show
that no efficient algorithms exist for them.

Since better runtimes are often required in many prac-
tical applications, we often use algorithms that can be ap-
plied to arbitrary Petri nets, but sometimes answer ‘’ don’t
know”, or do not terminate. We call them semi-decision
procedures. We also use faster decision procedures for
special Petri net classes.

Chapter 4 is devoted to semi-decision procedures. Chap-
ter 5 presents efficient decision algorithms for three classes:
S-nets, T -nets, and Free-Choice nets
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Chapter 3

Decision procedures

3.1 Decision procedures for 1-bounded
Petri nets

In many practical cases Petri nets are bounded by con-
struction. A bounded Petri net has finitely many reach-
able markings, and so the reachability graph can be com-
puted and stored, at least in principle. If the reachability
graph is available, then it is easy to give algorithms for b-
Boundedness, Reachability, and Deadlock-freedom run-
ning in linear time in the size of the reachability graph. We
show now that this is also the case for Liveness:

Let G = (V,E) be the reachability graph of a Petri
net(N,M0). We define the relation ∗←→⊆ V × V as fol-
lows: M ∗←→M ′ gdw. M ∗−→M ′ und M ′ ∗−→M.

The relation ∗←→ is clearly an equivalence relation on
V . Each equivalence class V ′ ⊆ V of ∗←→ yields together
with E′ = E ∩ (V ′ × V ) a strongly connected component
(SCC) (V ′, E′) of G.

Strongly connected components are partially ordered
by the relation < defined as follows: (V ′, E′) < (V ′′, E′′)
if V ′ 6= V ′′ and ∀M ′ ∈ V ′, M ′′ ∈ V ′′ : M ′′ ∈ [M ′〉. The
bottom SCCs of the reachability graph are the maximal
SCCs with respect to <.

Proposition 3.1.1 Let (N,M0) be a bounded Petri net.
(N,M0) is live iff for every bottom SCC of the reacha-
bility graph of (N,M0) and for every transition t, some
marking of the SCC enables t.

47
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Proof. (⇒) Assume (N,M0) is live. Let M be a mark-
ing of a bottom SCC of the reachability graph of (N,M0),
and let t be a transition ofN . By the definition of liveness,
some marking reachable from M enables t. By the def-
inition of bottom SCC, this marking belongs to the same
bottom SCC as M .

(⇐) Assume that for every bottom SCC of the reachability
graph of (N,M0) and for every transition t, some marking
of the SCC enables t. We show that (N,M0) is live. Let
M be an arbitrary marking reachable from M0, and let t
be a transition. By the definition of a bottom SCC, there
is a bottom SCC such that every marking of it is reachable
from M . Since some marking ot the SCC enables t, we
are done. �

The condition of Proposition 3.1.1 can be checked in
linear time using Tarjan’s algorithm, whch computes all
the SCCs of a directed graph in linear time. The algorithm
can be easily adapted to compute the bottom SCCs.

3.1.1 Complexity for 1-bounded Petri nets

A 1-bounded Petri net with n places may have up to 2n

reachable markings. Therefore, all algorithms based on
the construction of the reachability graph have exponen-
tial worst-case runtime for 1-bounded Petri nets. Using
Savitch’s theorem it is also easy to show that they are in
PSPACE. For example, the following polynomial-memory
nondeterministic program solves Reachability. Let Mg be
the goal marking, that is, the marking whose reachability
should be checked. The program stores a marking M ; ini-
tially M = M0. (Since the net is 1-bounded, if the net has
n places then a marking can be stored using n bits, and
so the program only needs linear space in the size of the
net.) While M 6= Mg, the program nondeterministically
chooses a transition t enabled atM , computes the marking
M ′ such that M t−→M ′, and sets M := M ′.

If the marking is not reachable, this program does not
terminate. If we want the program to always terminate,
then we can add to it a n-bit counter that counts the num-
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ber of steps. Since the Petri net has at most 2n reachable
markings, if M is reachable then it is reachable in at most
2n−1 steps. If the counter reaches the value 2n−1 without
reaching the marking M , the program stops.

We now show that the problems are PSPACE-complete.
We do so by means of a universal lower bound for the com-
plexity of deciding whether a 1-bounded Petri net satisfies
an interesting behavioural property:

Rule of thumb 1:
All interesting questions about the behaviour of 1-bounded Petri
nets are PSPACE-hard.

Notice that a rule of thumb is not a theorem. There are
behavioural properties of 1-bounded Petri nets that can be
solved in polynomial time. For instance, the question “Is
the initial marking a deadlock?” can be answered very
efficiently; however, it is so trivial that hardly anybody
would consider it really interesting. So a more careful
formulation of the rule of thumb would be that all ques-
tions described in the literature as interesting are at least
PSPACE-hard. Here are 14 examples:

• Is the Petri net live?

• Is some reachable marking a deadlock?

• Is a given marking reachable from the initial mark-
ing?

• Is there a reachable marking that puts a token in a
given place?

• Is there a reachable marking that does not put a to-
ken in a given place?

• Is there a reachable marking that enables a given
transition?

• Is there a reachable marking that enables more than
one transition?
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• Is the initial marking reachable from every reach-
able marking?

• Is there an infinite run?

• Is there exactly one run?

• Is there a run containing a given transition?

• Is there a run that does not contain a given transi-
tion?

• Is there a run containing a given transition infinitely
often?

• Is there a run which enables a transition infinitely
often but contains it only finitely often?

We need some preliminaries.

Turing machines. We use single tape Turing machines
with one-way infinite tapes, i.e., the tape has a first but not
a last cell. For our purposes it suffices to consider Tur-
ing machines starting on empty tape, i.e., initially the tape
containing only blank symbols. So we define a Turing ma-
chine as a tuple M = (Q,Γ, δ, q0, F ), where Q is the set
of states, Γ the set of tape symbols (containing a special
blank symbol), δ : (Q× Γ)→ Q× Γ× {R,L}) the tran-
sition function, q0 the initial state, and F the set of final
states. The size of a Turing machine is the number of bits
needed to encode its transition relation.

Linearly and exponentially bounded automata. We work
with Turing machines that can only use a finite tape frag-
ment, or equivalently, with Turing machines whose tape
has both a first and a last cell. We call them bounded au-
tomata. We assume that the first and last cells are marked
with two special symbols, say $ and #, and that the transi-
tion function guarantees that the head never moves to the
left of the first cell or to the right of the last cell.

A function f : N→ N induces the class of f(n)-bounded
automata, which contains for all k ≥ 0 the bounded au-
tomata of size k that can use f(k) tape cells (including the
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first and last cells). 1 When f(n) = n we get the class of
linearly bounded automata.

The PSPACE-hardness of all these problems is a con-
sequence of one single fundamental fact.

A linearly bounded automaton of size n can be simulated by a 1-
bounded Petri net of size O(n2). Moreover, there is a polynomial
time procedure which constructs this Petri net.

The notion of simulation used here is very strong: a
1-bounded Petri net simulates a Turing machine if there is
bijection f between the configurations of the machine and
the markings of the net such that the machine can move
from a configuration c1 to a configuration c2 in one step
if and only if the Petri net can move from the marking
f(c1) to the marking f(c2) through the firing of exactly
one transition.

Let A = (Q,Γ,Σ, δ, q0, F ) be a linearly bounded au-
tomaton of size n. The computations of M visit at most
the cells c1, . . . , cn. Let C be this set of cells. The simu-
lating Petri net N(A) contains a place s(q) for each state
q ∈ Q, a place s(c) for each cell c ∈ C, and a place s(a, c)
for each symbol a ∈ Γ and for each cell c ∈ C. A token
on s(q) signals that the machine is in state q. A token on
s(c) signals that the machine reads the cell c. A token on
s(a, c) signals that the cell c contains the symbol a. The
total number of places is |Q|+ n · (1 + |Σ|).

The transitions of N(A) are determined by the state
transition relation of A. If (q′, a′, R) ∈ δ(q, a), then we
have for each cell c a transition t(q, a, c) whose input places
are s(q), s(c), and s(a, c) and whose output places are
s(q′), s(a′, c) and s(c′), where c′ is the cell to the right
of c. If (q′, a′, L) ∈ δ(q, a) then we add a similar set
of transitions. The total number of transitions is at most

1Notice that we deviate from the standard definition, which says that
an automaton is f(n)-bounded if it can use at most f(k) tape cells for
an input word of length k. Since we only consider bounded automata
working on empty tape, the standard definition is not appropriate for
us.
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2 · |Q|2 · |Γ|2 · n, and so O(n2), because the size of A is
O(|Q|2 · |Γ|2).

The initial marking of N(A) puts one token on s(q0),
on s(c1), and on the place s(B, ci) for 1 ≤ i ≤ n, where
B denotes the blank symbol. The total size of the Petri net
is O(n2).

It follows immediately from this definition that each
move of A corresponds to the firing of one transition. The
configurations reached by A along a computation corre-
spond to the markings reached along its corresponding run.
These markings put one token in exactly one of the places
{s(q) | q ∈ Q}, in exactly one of the places {s(c) | c ∈
C}, and in exactly one of the places {s(a, c) | a ∈ Σ} for
each cell c ∈ C. So N(A) is 1-bounded.

In order to answer a question about a linearly bounded
automatonAwe can construct the netN(A), which is only
polynomially larger than A, and solve the corresponding
question about the runs of A. For instance, the question
“does any of the computations of A terminate?” corre-
sponds to “has the Petri net N(A) a deadlock?”

It turns out that most questions about the computations
of linearly bounded automata are PSPACE-hard. To begin
with, the (empty tape) acceptance problem is PSPACE-
complete:

Given: a linearly bounded automaton A.
To decide: if A accepts the empty input.

Moreover, the PSPACE-hardness of this problem is
very robust: it remains PSPACE-complete if we restrict
it to

• bounded automata having one single accepting state,

• bounded automata having one single accepting con-
figuration.

Many other problems can be easily reduced to the ac-
ceptance problem in polynomial time, and so are PSPACE-
hard too. Examples are:

• does A halt?,
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• does A visit a given state?,

• does A visit a given configuration?

• does A visit a given configuration infinitely often?

We obtain in this way a large variety of PSPACE-hard
problems. SinceN(A) is only polynomially larger thanA,
all the corresponding Petri net problems are PSPACE-hard
as well. For instance, a reduction from the problem “does
A ever visit a given configuration?” proves PSPACE-
hardness of the reachability problem for 1-bounded Petri
nets. Furthermore, once we have some PSPACE-hard prob-
lems for 1-bounded Petri nets we can use them to obtain
new ones by reduction. For instance, the following prob-
lems can be easily reduced to the problem of deciding if
there is a reachable marking that puts a token on a given
place:

• is there a reachable marking that concurrently en-
ables two given transitions t1 and t2?

• can a given transition t ever occur?

• is there a run containing a given transition t infinitely
often?

13 out of the 14 problems at the beginning of the sec-
tion (and many others) can be easily proved PSPACE-hard
using these techniques. Only the liveness problem, the first
in our list, is a bit more complicated.

3.2 Decision procedures for general Petri
nets

We study the decidability and complexity of Bounded-
ness, Coverability, Reachability, Deadlock-freedom and
Liveness for general Petri nets, not necessarily bounded.
The algorithms of the bounded case no longer work, be-
cause the construction of the reachability graph may not
terminate.
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3.2.1 A decision procedure for Boundedness

The b-Boundednesss problem is clearly decidable: if the
input Petri net (N,M0) has n places, then the number of
b-bounded markings of N is nb+1. So we can decide b-
Boundedness by constructing the reachability graph of
(N,M0) until either the construction terminates, or we
find a reachable marking that is not b-bounded.

The same idea gives a semi-decision procedure for Bound-
edness: again, we construct the reachability graph. If the
input (N,M0) is bounded, then there are finitely many
reachable markings, the construction terminates, and we
can return “bounded”. However, if the net is unbounded
then this procedure does not terminate.

We now give a decision procedure for Boundedeness.
We need two lemmas. The first one is a simple adapta-
tion of König’s Lemma; the second is known as Dickson’s
Lemma.

Lemma 3.2.1 (Königs lemma) Let G = (V,E) be the
reachability graph of a Petri net (N,M0). If V is infinite,
then G contains an infinite simple path.

Proof. Assume V = [M0〉 is infinite. For every reach-
able marking M there is a simple path πM from M0 to M .
SinceM0 has finitely many immediate successors (at most
one for each transition of N ), and each simple path πM
visits one of them, at least one immediate successor M1

of M0 has infinitely many successors in (V \ {M0}, E),
that is, [M1〉 \ {M0} is infinite. Iterating this argument we
construct an infinite simple path M0M1M2 · · · . �

Lemma 3.2.2 (Dickson’s lemma) For every infinite sequence
A1A2A3 . . . of vectors of Nk there is an infinite sequence
i1 < i2 < i3 . . . of indices such that Ai1 ≤ Ai2 ≤ Ai3 . . ..

Proof. By induction on k
Basis: k = 1. Then the elements of A are just numbers.
The set {A1, A2, · · · } has a minimum, say c1. Choose i1
as some index (say, the smallest), such thatAi1 = c1. Con-
sider now the set {Ai1+1, Ai1+2, · · · }. The set has a min-
imum c2, which by definition satisfies c1 ≤ c2. Choose i2
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as the the smallest index i2 > i1 such that Ai2 = c2, etc.
Step: k > 1. Given a vector Ai, let A′i be the vector of
dimension k − 1 consisting of the first k − 1 components
of Ai, and let ai be the last component of Ai. We write
Ai = (A′i | ai).
Since the vectors of A′1A

′
2A
′
3 · · · have dimension k − 1,

by induction hypothesis there is an infinite subsequence
A′i1 ≤ A′i2 ≤ A′i3 · · · . Consider now the sequence ai1ai2ai3 · · · .
By induction hypothesis there is a subsequence aj1 ≤ aj2 ≤
aj3 · · · . But then we have Aj1 ≤ Aj2 ≤ Aj3 · · · , and we
are done. �

Remark: Lemma 3.2.2 shows that the partial order ≤⊆
Nk×Nk is a well-quasi-order. Given a set A, and a partial
order�⊆ A×A, we say that� is a well-quasi-order if ev-
ery infinite sequence a1a2a3 · · · ∈ Aω contains an infinite
chain ai1 � ai2 � · · · . In the next section we examine
well-quasi-orders in more detail.

We use König’s Lemma and Dickson’s lemma to pro-
vide the following characterization of unboundedness.

Theorem 3.2.3 (N,M0) is unbounded iff there are mark-
ings M and L such that L 6= 0 and M0

∗−→ M
∗−→

(M + L)

Proof. (⇐) : Assume there are such markings M,L. By
the Monotonicity Lemma we have

M1
∗−→ (M1 + L)

∗−→ (M1 + 2 · L)
∗−→ . . .

Since L 6= 0, the set [M0〉 of reachable markings is infinite
and (N,M0) is unbounded.
(⇒) Assume (N,M0) is unbounded. Then the set [M0〉
of reachable markings is infinite. By Königs lemma there
is an infinite firing sequence M0

t1−→ M1
t1−→ M2 . . .

such thatthe markings M0,M1,M2, . . . are pairwise dis-
tinct. By Dickson’s Lemma there are indices i < j such
that M0

∗−→ Mi
∗−→ Mj and Mi ≤ Mj . Choose M :=

Mi and L := Mj −Mi. Since Mi and Mj are distinct, we
have L 6= 0. �
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Theorem 3.2.4 Boundedness is decidable.

Proof. We give an algorithm that always terminates and
always returns the correct answer: “ bounded” or “un-
bounded”. The algorithm explores the reachability graph
of the input Petri net (N,M0) using breadth-first search.
After adding a new marking M ′, the algorithm checks if
the part of the graph already constructed contains a se-
quence M0

∗−→ M
∗−→ M ′ such that M ≤ M ′ (and

M 6= M ′, because M ′ is new). The algorithm terminates
if it finds such a sequence, in which case it returns “un-
bounded”, or if it cannot add any new marking, in which
case it returns “bounded”.

If (N,M0) is bounded, then by Theorem 3.2.3 the al-
gorithm never finds a new marking M ′ satisfying the con-
dition above. So, since the Petri net has only finitely many
reachable markings, the algorithm terminates because it
cannot find any new marking, and correctly returns “bounded”.

If (N,M0) is unbounded, then there are infinitely many
reachable markings, and the algorithm cannot terminate
because it runs out of reachable markings. On the other
hand, by Theorem 3.2.3 the algorithm eventually finds mark-
ings M ′ and M as above, and so it correctly answers “un-
bounded”. �

3.2.2 Decision procedures for Coverability

The reachability graph of a Petri net can be infinite, in
which case the algorithm for computing the reachability
graph will not terminate. Therefore, the algorithm cannot
decide that a given marking is not coverable. In this sec-
tion we introduce several decision procedures that over-
come this problem.

Coverability graphs

We show how to construct a coverability graph of a Petri
net (N,M0). the coverability graph is always finite, and
satisfies the folloiwng property: a marking M of (N,M0)
is coverable iff some node M ′ of the coverability graph of
(N,M0) covers M , i.e., satisfies M ′ ≥M .



3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS57

We introduce a new symbol ω. Intuitively, it stands for
an arbitrarily large number. We extend the arithmetic on
natural numbers with ω as follows. For all n ∈ N:

n+ ω = ω + n = ω,
ω + ω = ω,
ω − n = ω,
0 · ω = 0
n ≥ 1⇒ n · ω = ω · n = ω,
n ≤ ω and ω ≤ ω.

Observe that ω−ω remains undefined, but we will not
need it.

We extend the notion of markings to ω-markings. An
ω-marking of a net N = (S, T, F ) is a mapping M : S →
N ∪ {ω}. Intuitively, in an ω-marking, each place s has
either a certain number of tokens or “arbitrarily many” to-
kens.

The enabledness condition and the firing rule neatly
extend to ω-markings with the extended arithmetic rules:
recall that a transition t is enabled at a markingM ifM(s) >
0 for every s ∈ •t. Now M(s) > 0 may hold because
M(s) = ω. Further, recall that if t is enabled, then it can
fire, leading from M to the marking M ′ given by:

M ′(s) =


M(s)− 1 if s ∈ •t \ t•
M(s) + 1 if s ∈ t• \ •t
M(s) otherwise

If s ∈ •t ∪ t• and M(s) = ω, then we have M ′(s) = ω.
That is, if a place contains ω tokens, then firing a transition
will not change its number of tokens, even if the transition
is connected with an arc to the place.

Assume M ′ ∈ [M〉 and M ≤M ′. Then there is some
sequence of transitions t1t2 . . . tn such thatM t1t2...tn−−−−−→M ′.
By the Monotonicity Lemma, there is a marking M ′′ with
M ′

t1t2...tn−−−−−→M ′′. Further, if we denote ∆M := M ′−M ,
then M ′′ = M ′ + ∆M = M + 2∆M (see Figure 3.1).
By firing the transition sequence t1t2 . . . tn repeatedly we
can “pump” an arbitrary number of tokens to all the places
s for which ∆M(s) > 0.

The main idea for the construction of the coverabil-
ity graph is to replace the marking M ′ by the ω-marking
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M
t1 t2 ... tn

M’
t1 t2 ... tn

M’’

= =

∆Μ ∆Μ

Μ+∆Μ Μ+2∆Μ

...

=

...

Figure 3.1: Pumping tokens.

M ′ + ω ·∆M . The algorithm is shown in Figure 3.2. The
following notations are used in the AddOmegas subrou-
tine:

• M ′′−→EM iff (M ′′, t,M) ∈ E for some t ∈ T .

• M ′′ ∗−→EM iff ∃n ≥ 0: ∃M0,M1, . . . ,Mn : M ′′ =
M0 →E M1 →E M2 →E · · · →E Mn = M .

Observe that COVERABILITY-GRAPH is very similar
to REACHABILITY-GRAPH, it just adds a call to subrou-
tine AddOmegas(M, t,M ′, V, E). Line 3 causes all places
whose marking in M ′ is strictly larger than in the “parent”
M ′′ to contain ω, while markings of other places remain
unchanged.

We show that COVERABILITY-GRAPH terminates, and
that a marking M of (N,M0) is coverable iff some node
M ′ of the coverabilitygraph of (N,M0) covers M , i.e.,
satisfies M ′ ≥M

Theorem 3.2.5 COVERABILITY-GRAPH terminates.

Proof. Assume that COVERABILITY-GRAPH does not
terminate. We derive a contradiction. If COVERABILITY-
GRAPH does not terminate, then it constructs an infinite
graph. Since every node of the graph has at most |T | suc-
cessors, by König’s lemma the graph contains an infinite
path Π = M1M2 . . .. If an ω-marking Mi of Π satisfies
Mi(p) = ω for some place p, thenMi+1(p) = Mi+2(p) =
. . . = ω. So Π contains a marking Mj such that all mark-
ings Mj+1,Mj+2, . . . have ω’s at exactly the same places
as Mj . Let Π′ be the suffix of Π starting at Mj . Con-
sider the projection Π′′ = mjmj+1 . . . of Π′ onto the non-
ω places. Let n be the number of non-ω places. Π′′ is
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COVERABILITY-GRAPH((P, T, F,M0))
1 (V,E, v0) := ({M0}, ∅,M0);
2 Work : set := {M0};
3 while Work 6= ∅
4 do select M from Work ;
5 Work := Work \ {M};
6 for t ∈ enabled(M)
7 do M ′ := fire(M, t);
8 M ′ := AddOmegas(M, t,M ′, V, E);
9 if M ′ /∈ V

10 then V := V ∪ {M ′}
11 Work := Work ∪ {M ′};
12 E := E ∪ {(M, t,M ′)};
13 return (V,E, v0);
ADDOMEGAS(M, t,M ′, V, E)
1 for M ′′ ∈ V
2 do if M ′′ < M ′ and M ′′ ∗−→EM
3 then M ′ := M ′ + ((M ′ −M ′′) · ω);
4 return M ′;

Figure 3.2: Algorithm for the construction of the cover-
ability graph
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an infinite sequence of distinct n-tuples of natural num-
bers. By Dickson’s lemma, this sequence contains mark-
ings Mk,Ml such that k < l and Mk ≤ Ml. This is
a contradiction, because, since Mk 6= Ml, when execut-
ing AddOmegas(Ml−1, t,Ml, V, E) the algorithm adds at
least one ω to Ml−1. �

For the rest of the proof we start with a lemma. It
states that if COVERABILITY-GRAPH adds an ω-marking
M ′, say M ′ = (ω, 2, 0, ω, 3, ω), then for every k, say
15, there is a reachable marking where the ω-components
have at least the value 15; for example, for 15 the mark-
ing could be (17, 2, 0, 234, 3, 15). In other words, if the
algorithm adds an ω-marking (ω, 2, 0, ω, 3, ω), it is possi-
ble to reach arbitrarily large values for all ω-components
simultaneously.

Definition 3.2.6 Given an ω-marking M , we say that s is
an ω-place of M if M(s) = ω, and a normal place of M
if M(s) ∈ N.

Lemma 3.2.7 For every ω-markingM ′ added by COVERABILITY-
GRAPH to V and for every k > 0, there there is a reach-
able marking M ′k satisfying M ′k(s) = M ′(s) for every
normal place s of M ′, and M ′k(s) > k for every ω-place
of M ′.

Proof. Consider an arbitrary point during execution of
COVERABILITY-GRAPH. We prove that if all ω-markings
added to V until this point satisfy the lemma, then the next
ω-marking that is added to V also does.

Assume the algorithm is currently exploring marking
M and transition t, and let M be the ω-marking such that
M

t−→M . By induction hypothesis, for every k > 0 there
is a reachable marking Mk satisfying Mk(s) = M(s) for
every place normal place s ofM , andMk(s) > k for every
ω-place s of M .

Assume AddOmegas does not add any new ω to M ,
andM /∈ V . Then COVERABILITY-GRAPH addsM to V ,
and we can takeMk as the marking given byMk+1

t−→Mk:
Indeed, since Mk+1(s) > k + 1 for every ω-place of
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M , and t removes at most one token from s, we have
Mk(s) > k.

Assume now that AddOmegas finds a unique ω-marking
M ′′ satsifying the conditionM ′′ ∗−→EM

t−→M andM ′′ ≤
M . Assume further that M ′′(s0) < M(s0) holds for a
unique place s0 (the case where there is more than one
such M ′′ and more than one such s0 is similar). Then
COVERABILITY-GRAPH adds to V the marking M ′ =
M + (M −M ′′) · ω, which has exacly one more ω-place
than M ′′, namely the place s0. We prove that for every
k > 0 it is possible to reach a marking M ′k satisfying
M ′k(s) = M ′(s) for every normal place s of M ′, and
M ′k(s) > k for every ω-place of M ′.

Fix an arbitrary k. Our goal is to construct the marking
M ′k.

Let σ be a firing sequence such that M ′′ σ−→M
t−→M .

By induction hypothesis, for every ` > 0 there is a reach-
able marking M ′′` satisfying M ′′` (s) = M ′′(s) for every
normal place s of M ′′, and M ′′` (s) > ` for every ω-place
s of M ′′.

Observe that the sequence σt may not be firable from
M ′′` : Indeed, consider an ω-place s of M ′′. The sequence
σt may remove tokens from s, but if the sequence is fired
from M ′′ then we do not “notice” because M ′′(s) = ω. If
` is not large enough, then M ′′` (s) may not have enough
tokens to fire σt. However, M ′′` enables σt for every suf-
ficiently large value of `. 2 Even more: since M ′′(s) ≤
M(s) for every normal place s of M ′′, by choosing a suf-
ficiently large `we can execute σt fromM ′′` not only once,
but as many times as we want. Moreover, since M ′′(s0) <
M(s0), by executing σt a sufficiently large number of times
we can put arbitrarily many tokens in the place s0.

We can now finally define the marking M ′k. Choose a
number ` large enough to guarantee that

(1) M ′′` enables (σt)k+1, and

2For instance, take ` = |σt|, since σ t can remove at most |σt|
tokens from a place.
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(2) the marking M ` given by M ′′`
(σt)k+1

−−−−−→M ` satisfies
M `(s) > k for every ω-place of M ′′.

Since the execution of σt adds at least one token to s0, af-
ter the execution of (σt)k+1 the place s0 has at least k + 1
tokens, and so M `(s) > k. Since M ` also satisfies (2), we
can take M ′k := M `. �

Theorem 3.2.8 Let (N,M0) be a Petri net and letM be a
marking of N . There is a reachable marking M ′ ≥ M iff
the coverability graph of (N,M0) contains an ω-marking
M ′′ ≥M .

Proof. (⇒): Assume there is a reachable marking M ′ ≥
M . Then some firing sequence

M0
t1−−→M1

t2−−→M2 · · ·Mn−1
tn−−→M ′

of (N,M0) leads from M0 to M ′. By the definition of the
algorithm, the coverability graph contains a path

M0
t1−−→M ′1

t2−−→M ′2 · · ·Mn−1
tn−−→M ′n

such that M ′i ≥Mi for every 1 ≤ i ≤ n. Take M ′′ = M ′n.
(⇐): Assume the coverability graph of (N,M0) con-

tains an ω-marking M ′′ ≥ M . By Lemma 3.2.7, there is
a reachable marking M ′′k satisfying M ′′k (s) = M ′′(s) for
every normal place s of M ′′, and M ′′k (s) > k for every ω-
place s of M ′′. Take k larger than any of the components
of M , and set M ′ := M ′′k . We have M ′ ≥M . �

Rackoff’s algorithm

The coverability graph allows us to answer coverability
of any marking. However, Coverability asks whether a
particular marking M can be covered. The question is
whether we can give a bound on the size of the fragment
of the coverability graph we need to construct to find an
ω-marking covering M .

We consider Petri nets in which places may have a neg-
ative number of tokens. Transitions can occur indepen-
dently of the number of tokens in their input places.
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Definition 3.2.9 (Integer nets) Let N = (S, T, F ) be a
net. A generalized marking of N (g-marking for short) is
a mapping G : S → Z. An integer net is a pair (N,G0)
where N is a net and G0 is a g-marking. The firing rule of
integer nets is defined as follows: A g-marking G enables
all transitions, and the occurrence of t at G leads to the
marking G′ given by

G′(s) =


G(s)− 1 if s ∈ •t \ t•
G(s) + 1 if s ∈ t• \ •t
G(s) otherwise

We denote by G
t
↪→ G′ that firing t at G leads to the g-

marking G′. An integer firing sequence of an integer net is

a sequence G0
t1
↪→ G1

t2
↪→ · · · tn↪→ Gm.

Every marking is also a g-marking, ever Petri net is
also an integer net, and every firing sequence is also an
integer firing sequence, but the converse does not hold.

In the rest of the section we fix a net N with places
{s1, . . . , sk}, and identify g-markings with vectors of Zk.

Definition 3.2.10 Let G ∈ Zk be a g-marking of N and
let 0 ≤ i ≤ k.

• G is i-natural if its first i-components are natural
numbers, i.e., if 0 ≤ G(j) for every 1 ≤ j ≤ i.

• G is (i, r)-natural if 0 ≤ G(j) < r for every 1 ≤
j ≤ i.3

Let σ = G0
t1
↪→ · · · tm↪→ Gm be an integer firing sequence,

and let G ∈ Zk.

• σ is i-natural if all of G0, G1, . . . , Gm are i-natural
g-markings.

• σ is (i, r)-natural if all ofG0, G1, . . . , Gm are (i, r)-
natural g-markings.

• σ is (i, G)-covering if Gm(j) ≥ G(j) for every 1 ≤
j ≤ i. 4

3Observe that we require G(j) < r, not G(j) ≤ r.
4But possibly Gm(j) < G(j) for components j > i.
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Intuitively, G is i-natural if its restriction to the first i
places is a “normal” marking, and σ is i-natural if its re-
striction to the first i places is a “normal” firing sequence.
In particular, sinceN has k places, the k-natural sequences
ane the “normal” firing sequences coincide. So deciding
if M is coverable in (N,M0) is equivalent to deciding if
(N,M0) has a (k,M)-covering sequence.

We prove the following result:

Theorem 3.2.11 [Rackoff 1978] Let M ∈ Nk be a mark-
ing of N , and let n = 1 +

∑k
i=1M(i). For every mark-

ing M0 ∈ Nk of N , if (N,M0) has a (k,M)-covering
sequence, then it has one of length at most (2n)(k+1)! ∈
n2

O(k log k)
.

Before proving the theorem, we make two observa-
tions:

• The bound (2n)(k+1)! depends on the number of to-
kens of M and on k, the number of places of N .
However, it does not depend on the number of to-
kens of M0.

• The bound is polynomial on n (for Petri nets with a
fixed number k of places, the bound is of the form
O(nc) for some constant c), but double exponential
on k (for markings with a fixed number n of tokens,
the bound is of the form 22

ck log k
for some constant

c).

The proof of the theorem is based on the following Lemma:

Lemma 3.2.12 Let G ∈ Zk be a g-marking of N , and let
n = 1 +

∑k
i=1 |G(i)|. For every G0 ∈ Zk and for every

0 ≤ i ≤ k, if (N,G0) has an (i, G)-covering sequence,
then it has one of length at most f(i), where f is induc-
tively defined as follows:

• f(0) = 1, and

• f(i) = (nf(i− 1))i + f(i− 1) for every i ≥ 1.
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Proof The proof is by induction on i.
Base: i = 0. Follows vacuously from the fact that G0 is
a (0, G)-covering sequence (the condition G0(j) ≥ G(j)
for every 1 ≤ j ≤ i holds vacuously when i = 0).
Step: i > 0. Assume (N,G0) an (i, G)-covering se-
quence. We consider two cases:

Case 1: (N,G0) has an (i, G)-covering, (i, nf(i − 1))-
natural sequence.
Assume the sequence is

σ = G0
t1
↪→ · · · tm↪→ Gm

and assume further that it has minimal length.
We claim that G0, G1, . . . , Gm are pairwise different.

Assume the contrary: there exist α < β such thatGα(j) =
Gβ(j) for every 1 ≤ j ≤ i. Then the sequence

σ′ = G0
t1
↪→ · · · tα−−→Gα

tβ+1
↪→ G′β+1

tβ+2
↪→ · · · tm↪→ G′m

is also (i, G)-covering and (i, nf(i − 1))-natural, contra-
dicting the minimality of σ. This proves the claim.

Since σ is (i, nf(i − 1))-natural, for every g-marking
G′ appearing in σ and for for every 1 ≤ j ≤ iwe have 0 ≤
G′(j) < nf(i − 1). That is, there are nf(i − 1) possible
values for G′(j). It follows that there are at most (nf(i−
1))i different possible values for the segment (G′(1), G′(2), . . . , G′(i))
of G′. By the claim above, the length of σ is at most
(nf(i− 1))i ≤ f(i).

Case 2: (N,G0) has no (i, G)-covering, (i, nf(i − 1))-
natural sequence.
Then there is an (i, G)-covering sequence that is not (i, nf(i−
1))-natural. Let this sequence be

σ = G0
t1
↪→ G1

t2
↪→ · · ·Gm−1

tm
↪→ Gm

Let Gα+1 be the first vector of σ that is not (i, nf(i −
1))-natural. Without loss of generality, we can assume
Gα+1(i) ≥ nf(i − 1) (if this would not be the case, we
can just reorder the places of the net). Then the prefix

G0
t1
↪→ · · · tα↪→ Gα
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is (i, Gα)-covering and (i, nf(i − 1))-natural. As in the
previous case, we can assume α ≤ (nf(i− 1))i.

Since

Gα+1
tα+1
↪→ Gα+2

tα+2
↪→ · · · tm↪→ Gm

is an (i − 1, G)-covering and (i − 1)-natural sequence of
(N,Gα+1), by induction hypothesis there exists another
(i− 1, G)-covering and (i− 1)-natural sequence

Gα+1
u1
↪→ H1

u2
↪→ · · · u`↪→ H`

of (N,Gα+1) of length at most f(i−1), that is, ` ≤ f(i−
1). Since Gα+1(i) ≥ nf(i− 1), and a sequence of length
f(i−1) can remove at most f(i−1) tokens from the place
si, after the execution of the new sequence the number of
tokens in si is at least (n − 1)f(n − 1) ≥ n − 1. By the
definition of n, we have n− 1 ≥ G(i). So the sequence

σ′ = G0
t1
↪→ · · · tα↪→ Gα

tα+1
↪→ u1

↪→ H1
u2
↪→ · · · u`↪→ H`

is an (i, G)-covering and i-natural sequence of (N,G0) of
length at most (nf(i− 1))i + f(i− 1) = f(i). �

The function f grows rapidly in k:

f(0) = 1
f(1) = (nf(0))1 + f(0) = n+ 1 ∈ O(n)
f(2) = (nf(1))2 + f(1) = (n(n+ 1))2 + n+ 1 ∈ O(n4)
f(3) = (nf(2))3 + f(2) ∈ O(n15)
f(4) = (nf(3))4 + f(3) ∈ O(n64)

In general, if f(i) ∈ O(nj), then f(i+1) ∈ O(n(1+j)(1+i)).
We now proceed to prove Theorem 3.2.11:

Proof of Theorem 3.2.11. Assume that (N,M0) has a
(k,M)-covering sequence. By Lemma 3.2.12, it has one
of length at most f(k). So it suffices to prove f(k) ≤
(2n)(k+1)!.

We prove by induction on i that f(i) ≤ (2n)(i+1)! for
every i ≥ 0. Recall that n ≥ 1 holds by the definition of
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n. Further, it follows immediately from the definition of f
that f(i) ≥ 1 for every i ≥ 0.
Base: i = 0. Since n ≥ 1, we have f(0) = 1 ≤ 2n =
(2n)1!.

Step: i > 0. Assume f(i− 1) ≤ (2n)i!. We prove f(i) ≤
(2n)(i+1)!. We have:

f(i) = (nf(i− 1))i + f(i− 1) (definition of f )
≤ (n(2n)i!)i + (2n)i! (ind. hyp.)
≤ (n(2n)i!)i + (n(2n)i!)i (n ≥ 1, i ≥ 1)
= 2(n(2n)i!)i

= 2ii!+1nii!+i

≤ 2(i+1)!n(i+1)! (n ≥ 1, i ≥ 1)

= (2n)(i+1)!

Finally, let us prove (2n)(k+1)! ∈ n2O(k log k)
. We first show

(k + 1)! ∈ 2O(k log k).

(k + 1)! ≤ (k + 1)k+1 (definition of factorial)
≤ (2k)k+1 (k ≥ 1)

=
(
2(log k+1)

)k+1
= 2(log k+1)(k+1)

∈ 2O(k log k)

Now, since 2n ≤ n2 for every n ≥ 1, we get

(2n)(k+1)! ≤ n2(k+1)!

∈ n2·2
O(k log k)

= n2
1+O(k log k)

= n2
O(k log k)

�

By Theorem 3.2.11, in order to decide coverability
of M we can just construct the reachability graph using
breadth-first search up to depth (2n)(k+1)!, where n is the
number of tokens of M plus 1, and k is the number of
places in the net. Clearly, the same holds for the cover-
ability graph, because, loosely speaking, it just “improves”
our chances of covering M .
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The backwards-reachability algorithm

The backwards reachability algorithm decides if a marking
M is coverable in (N,M0) by considering the setM of all
markings that cover M , computing the set of predecessors
of M, i.e., the set of all markings M ′ (reachable or not)
such that M ′ ∗−→M ′′ for some M ′′ ∈ M, and checking if
M0 belongs to this set. Since even the set M is infinite,
this computation requires to use a finite representation of
infinite set of markings.

Definition 3.2.13 (Upward-closed sets of markings)
A setM of markings of a net N is upward closed if M ∈
M and M ′ ≥M imply M ′ ∈M.

A marking M of an upward closed setM is minimal
if there is no M ′ ∈M such that M ′ ≤M and M ′ 6= M .

Observe that an upward closed set is completely deter-
mined by its minimal elements: two upwards closed sets
are equal iff their sets of minimal elements are equal.

Lemma 3.2.14 Every upward-closed set of markings has
finitely many minimal elements.

Proof. Assume M is upward closed and has infinitely
many minimal markingsM1,M2, . . .. By Dickson’s Lemma
there are i 6= j such that Mi ≤ Mj . But then Mj is not
minimal. Contradiction. �

An important consequence of the lemma is that every
upwards closed set can be finitely represented by its set of
minimal elements.

We define the set pre(M) of predecessors of a set
of markings M, and the set pre∗(M) of markings from
which one ca reach some marking ofM.

Definition 3.2.15 Let M be a set of markings of a net
N = (S, T, F ), and let t ∈ T be a transition. We define

pre(M, t) = {M ′ |M ′ t−→M for some M ∈M}

pre(M) =
∞⋃
t∈T

pre(M, t)
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and further

pre0(M) = M
prei+1(M) = pre

(
prei(M)

)
for every i ≥ 0

pre∗(M) =

∞⋃
i=0

prei(M)

We have the following fundamental lemma:

Lemma 3.2.16 IfM is upward closed, then pre(M) and
pre∗(M) are also upward closed.

Proof. We first show that pre(M) is upward closed. Let
M ′ ∈ pre(M). We have to prove that M ′ + M ′′ ∈
pre(M) holds for every marking M ′′.

Since M ′ ∈ pre(M) there is M ∈ M and a tran-
sition t such that M ′ t−→M . By the firing rule we have
M ′ + M ′′ t−→M + M ′′ for every marking M ′′. Since
M is upward closed, we have M + M ′′ ∈ M. Since
M ′ +M ′′ t−→M +M ′′, we get M ′ +M ′′ ∈ pre(M).

Now we prove that pre∗(M) is upward closed. By
repeated application of teh first part of this lemma we ob-
tain that prej(X) is upward closed for every j ≥ 0. So
pre∗(M) is a union of upward-closed sets. But it follows
immediately from the definition of an upward-closed set
that the union of upward-closed sets if also upward closed.

�

Combining Lemma 3.2.16 and Lemma 3.2.14 we obtain:

Theorem 3.2.17 LetM be an upward-closed set of mark-
ings of a net. Then there is i ≥ 0 such that

pre∗(M) =

i⋃
j=0

prej(M)

Proof. By Lemma 3.2.16, pre∗(M) is upward closed.
By Lemma 3.2.14, the set m∗ of minimal markings of
pre∗(M) is finite. therefore, there exists an index i such
that m∗ ⊆ ⋃i

j=0 pre
j(M). Since this union is upward
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closed, we get pre∗(M) ⊆ ⋃i
j=0 pre

j(M). By the defini-
tion of pre∗(M), we have pre∗(M) =

⋃i
j=0 pre

j(M). �

BACK1((P, T, F,M))
1 M := {M ′ |M ′ ≥M};
2 Old M := ∅;
3 while true
4 do Old M :=M;
5 M :=M∪ pre(M);
6 if M0 ∈M
7 then return covered end
8 ifM = Old M
9 then return not covered end

BACK2((P, T, F,M))
1 m := {M};
2 old m := ∅;
3 while true
4 do old m := m;
5 m := min(m ∪⋃t∈T pre(R[t] ∧m));
6 if ∃M ′ ∈ m : M0 ≥M ′
7 then return covered end
8 if m = old m
9 then return not covered end

Figure 3.3: Backwards reachability algorithm.

This theorem leads to the algorithm on the left of of
Figure 3.3. Observe that the termination of the algorithm
follows from Dickson’s Lemma, and does not require knowl-
edge of Petri nets. In particular, the termination argument
does not provide information on the number of iterations
of the while loop. However, using Rackoff’s theorem we
can obtain an upper bound.

Theorem 3.2.18 LetM be an upward-closed set of mark-
ings of a net with a set of places S. Let {M1, . . . ,Mm} be
the set of minimal markings ofM, let ni = 1+

∑
s∈SMi(s)

for every 1 ≤ i ≤ m, and let n = max{n1, . . . , nm}.
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Then

pre∗(M) =

(2n)(k+1)!⋃
j=0

prej(M)

Proof. LetM ∈ pre∗(M). By the definition of pre∗(M),
there is a marking M ′ ∈ M such that M ∗−→M ′, and so
M ′ ≥ Mi for some minimal marking Mi. By Theorem
3.2.11 and the definition of n, there exists a firing sequence
M

σ−→M ′′ ≥ Mi such that |σ| ≤ (2n)(k+1)!. SinceM is
upward closed, we have M ′′ ∈M, and so M ∈ prej(M)
for j = |σ| ≤ (2n)(k+1)!. �

The algorithm on the left of of Figure 3.3 is not yet di-
rectly implementable, because it manipulates infinite sets.
For each operation (union and pre) and for each test (the

tests M ?
= Old M and M0

?∈ M of the while-loop),
we have to supply an implementation that uses only the
finite representation of the set, that is, its set of minimal
elements. For the tests this is easy. Given a set M, let
min(M) denote the set of minimal elements of M. We
have:

(1) M0 ∈ M iff there exists M ′ ∈ min(M) such that
M0 ≥M ′.

(2) M = Old M iff min(M) = min(Old M).

Let us now derive implementations for the operations
∪ and pre. Given a transition t, let R[t] be the marking
that puts one token in each output place of t, and no to-
kens elsewhere. (This is the minimal marking that reverse-
enables t, i.e., the minimal marking that allos us to fire
t “backwards”). Further, given a set M of markings let
M[t] = {M ∈ M | M ≥ R[t]}. That is,M[t] is the set
of markings ofM that enable t “backwards” Observe that
if M is upward closed, then so is M[t]. We have (exer-
cise):

(3) min(M∪ pre(M)) = min(min(M) ∪min(pre(M))

= min(min(M) ∪
⋃
t∈T

min(pre(M, t))
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(4) min(pre(M, t)) = pre(min(M[t])).

These equations reduce the problem of computing min(M∪
pre(M)) to computing min(M[t]). For this we introduce
a definition. Given two markings M,M ′, let M ∧M ′ be
the marking defined by (M∧M ′)(s) = max{M(s),M ′(s)}
for every place s. Further, given a marking M and a set of
markingsM, define M ∧M = {M ∧M ′ |M ′ ∈M}.

Then we have (exercise)

(5) If M is upward closed, then min(M[t]) = R[t] ∧
min(M). 5

That is, the minimal markings ofM that reverse-enable t
are obtained by taking the minimal markings of M, and
computing their join with the marking R[t]. Putting to-
gether (3)-(5) we obtain

(6) IfM is upward closed, then

min(M∪pre(M)) = min

(
min(M) ∪

⋃
t∈T

(
R[t] ∧min(M)

))

Using these observations, we obtain the implementable
version of the backwards-reachability algorithm shown on
the right of Figure 3.3.

The abstract backwards-reachability algorithm

The backwards reachability algorithm can be reformulated
in more general terms, which allows to apply it to other
models of concurrency more general than Petri nets. This
is an important advantage of the backwards reachability
algorithm over the coverability graph technique.

Definition 3.2.19 Given a set A, and a partial order �⊆
A × A, we say that � is a well-quasi-order (wqo) if ev-
ery infinite sequence a1a2a3 · · · ∈ Aω contains an infinite
chain ai1 � ai2 � · · · (where i1 < i2 < i3 . . .).

Here are some examples of well-quasi-orders:
5SinceM ∧R[t] ≥M , ifM is upward closed we haveM ∧R[t] ∈

M for every M ∈ min(M).
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• The pointwise order ≤ on Nk.

• The subword order on Σ∗ for any finite alphabet Σ.
We say w1 � w2 if w1 is a scattered subword of w2,
that is, if w1 can be obtained from w2 by deleting
letters. Higman’s lemma states that every infinite
sequence of words contains an infinite chain with
respect to the subword order.

• The subtree order on the set of finite trees over a fi-
nite alphabet Σ.
We say that t1 � t2 if there is an injective mapping
from the nodes of tree t1 into the nodes of t2 that
preserves reachability: n′ is reachable from n in t1
iff the image of n′ is reachable from the image of
n in t2. Kruskal’s lemma states that every infinite
sequence of trees contains an infinite chain with re-
spect to the subtree order.

Definition 3.2.20 Let A be a set and let � A × A be a
wqo. A set X ⊆ A is upward closed if x ∈ X and x � y
implies y ∈ X for every x, y ∈ A. In particular, given
x ∈ A, the set {y ∈ A | y � x} is upward-closed.

A relation→⊆ A×A is monotonic if for every x→ y
and every x′ � x there is y′ � y such that x′ → y′.

Given X ⊆ A, we define

pre(X) = {y ∈ A | y → x and x ∈ X}
Further we define:

pre0(X) = X

prei+1(X) = pre
(
prei(X)

)
for every i ≥ 0

pre∗(X) =

∞⋃
i=0

prei(X)

We can now prove the following theorem:

Theorem 3.2.21 LetA be a set and let� A×A be a wqo.
Let X0 ⊆ A be an upward closed set and let→⊆ A × A
be monotonic. Then there is j ∈ N such that

pre∗(X) =

j⋃
i=0

prei(X)
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This theorem can be used to obtain a backwards reach-
ability algorithm for generalizations of Petri nets, like reset
Petri nets, or lossy channel systems, whose transition rela-
tion is monotonic. Other net models, like Petri nets with
inhibitor arcs, do not have a monotonic transition relations
(adding tokens may disable a transition), and the theorem
cannot be applied to them . In fact we have:

Theorem 3.2.22 Deadlock freedom, Liveness, Bound-
edness, b-boundedness, Reachability, and Coverability
are all undecidable for Petri nets with inhibitor arcs.

3.2.3 Decision procedures for other problems

Reachability

The decidability of Reachability was open for about 10
years until it was proved by Mayr in 1980. Kosaraju and
Lambert simplied the proof in 1982 and 1992, respectively.
All these algorithms and their proofs exceed the frame-
work of this course.

In 2012 Leroux provided a new, very simple algorithm.
Its proof is as complicated as the proofs of the previous
ones, but the algorithm is very simple.

Definition 3.2.23 (Semilinear set) A set X ⊆ Nk is lin-
ear if there is r ∈ Nk (the root) and a finite set P ⊆ Nk
(the periods) such that

X = {r +
∑
p∈P

λpp | ∀p ∈ P : λp ∈ N}

A semilinear set is a finite union of linear sets.

Observe that a semilinear set can be finitely represented
as a set of pairs {(r1, P1), . . . , (rn, Pn)} giving the roots
and periods of its linear sets.

Theorem 3.2.24 [Leroux 2012] Let (N,M0) be a Petri
net and let M be a marking of M . If M is not reachable
fromM0, then there exists a semilinear setM of markings
of N such that

(a) M0 ∈M,
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(b) if M ∈ M and M t−→M ′ for some transition t of
N , then M ′ ∈M, and

(c) M /∈M.

Given the root r and periods p1, . . . , pn of a semilinear
setM, we can check whetherM satisfies (a)-(c). Indeed,
checking (a) amounts to solving the linear system of dio-
phantine equations

M0 = r +

n∑
i=1

λipi

with unknowns λ1, . . . , λn. Similarly, checking (c) amounts
to showing that

M = r +

n∑
i=1

λipi

has no solution. Finally, checking (b) is more complicated,
but reduces to checking validity of a formula of a theory
called Presburger arithmetic for which decision procedures
exist.

Now, Theorem 3.2.24 can be used to give an algorithm
for Reachability consisting of two semi-decision proce-
dures, one that explores the reachability graph breadth-
first and stops if it finds the goal marking M , and another
one that enumerates all semilinear sets, and stops if one
of them satisfies (a)-(c). The two procedures run in paral-
lel, and, since one of the two is bound to terminate, yield
together a decision procedure for Reachability.

Deadlock-freedom

We reduce Deadlock-freedom to Reachability. We pro-
ceed in two stapes. First, we reduce Deadlock-freedom to
an auxiliary problem P, and then we reduce P to reacha-
bility.

P: Given a Petri net (N,M0) and a subset R
of places of N , is there a reachable marking
M such that M(s) = 0 for every s ∈ R?
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Theorem 3.2.25 Deadlock-freedom can be reduced to P.

Proof. Let (N,M0) be a Petri net such thatN = (S, T, F ).
Define

S = {R ⊆ S | ∀t ∈ T : •t ∩R 6= ∅}

that is, an element of S contains for every transition t at
least on ef the input places of t. We have

(1) S is a finite set..

(2) A marking M of N is dead iff the set of places un-
marked at N is an Element of S.

Suppose now that there is an algorithm that decides P. We
can then decide Deadlock-freedom as follows. For every
R ∈ S we use the algorithm for P to decide if some reach-
able marking M satisfies M(s) = 0 for every s ∈ R. It
follos from (2) that (N,M0) is deadlock-free if the answer
is negative in all cases. Since, by (1), we only have to solve
a finite number of instances of P, Deadlock-freedom is
decidable. �

Theorem 3.2.26 P can be reduced to Reachability.

Proof. Let (N,M0) be a Petri net where N = (S, T, F ),
and let R be a set of places of N . We construct a new Petri
net (N ′,M ′0) by adding new places, transitions, and arcs
to (N,M0). We proceed in two steps (see Figure 3.4):

• Add two new places s0 and r0. Put one token on s0.

• Add a transition t0 and arcs (s0, t0) and (t0, r0).

• For every transition t ∈ T , add two arcs (s0, t) und
(t, s0).

While s0 remains marked, all transitions of T can fire.
However, transition t0 can occur at any time, and when this
happens all transitions of T become “dead”. Intuitively,
the firing of t0 “freezes” (N,M0).
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Figure 3.4: Construction of Theorem 3.2.26

• For every place s ∈ S \ R add a new transition ts
and arcs (s, ts), (r0, ts), (ts, r0).

If r0 is marked, then the ts transitions can occur. These
transitions “empty” the places of S \R.

This concludes the definition of (N ′,M ′0).
Let Mr0 be the marking of N ′ that puts one token on

r0 and no tokens elsewhere. We have

(1) If some reachable marking M of (N,M0) puts no
tokens in R, then Mr0 is a reachable marking of
(N ′,M ′0).

To reach Mr0 we first fire transiitons of T to reach
M , then we fire t0, and finally we fire ts transitions
until S is empty.
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(2) If Mr0 is a reachable marking of (N ′,M ′0), then
some marking M reachable from (N,M0) puts no
tokens in R.

Mr0 can only be reached by firing t0 at a marking
that puts no tokens in R (because after firing t0 the
places of R cannot be emptied anymore). So we
can choose M as the marking reached immediately
before firing t0.

By (1) and (2), we can decide if some reachable mark-
ing M of (N,M0) puts no tokens in R as follows: con-
struct (N ′,M ′0) and decide if Mr0 is reachable. therefore,
if there is an algorithm for Reachability, then there is also
one for P. �

Liveness

Liveness can also be reduced to Reachability, but the proof
is more complex. We sketch the reduction for the problem
whether a given transition t of a Petri net (N,M0) is live.

LetEt be the set of markings ofN that enable t. Clearly,
Et is upward closed. By Lemma 3.2.16, the set pre∗(Et)
is also upward closed. Now, pre∗(Et) is the set of mark-
ings of N that enable some firing sequence ending with t.
Let Dt be the complement of pre∗(Et), that is, the set of
markings from which t cannot be enabled anymore. We
have: (N,M0) is live iff [M0〉 ∩Dt = ∅.

If Dt is a finite set of markings, and we are able to
compute it, then we are done: we have reduced the liveness
problem to a finite number of instances of Reachability.
However, the set Dt may be infinite, and we do not yet
know how to compute it. We show how to deal with these
problems.

Every upward-closed set of markings is semilinear (ex-
ercise). Using the backwards reachability algorithm, we
can compute the finite set min(pre∗(Et)), and from it we
can compute a representation of pre∗(Et) as a semilinear
set. Now we use a powerful result: the complement of
a semilinear set is also semilinear; moreover, there is an
algorithm that, given a representation of a semilinear set
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X ⊆ Nk, computes a representation of the complement
Nk \X . So we are left with the problem: given a Petri net
(N,M0) and a semilinear set X , decide if some marking
of X is reachable from M0.

This problem can be reduced to Reachability as fol-
lows (brief sketch). We construct a Petri net that first sim-
ulates (N,M0), and then transfers control to another Petri
net which nondeterministically generates a marking of X
on “copies” of the places ofN . This second net then trans-
fers control to a third, whose transitions remove one token
from a place of N and a token from its “copy”. If X is
reeachble, then the first net can produce a marking of X ,
the second net can produce the same marking, and the thrid
net can then remove all tokens from the first and second
nets, reaching the empty marking. Conversely, if the net
consisting of the three nets together can reach the empty
marking, then (N,M0) can reach some marking of X .

3.2.4 Complexity

Unfortunately, all the problems we have seen so far have
very high complexity. We prove that all of them are EXPSPACE-
hard. That is, the memory needed by any algorithm solv-
ing one of these problems grows at least exponentially in
the size of the input Petri net. Rackoff’s algorithm shows
that Coverability is EXPSPACE-complete, that is, that
exponentially growing memory suffices. The same can be
proved for Boundedness. For a long time it was conjec-
ture that Deadlock-freedom, Liveness, and Reachability
were EXPSPACE-complete as well. However, the con-
jecture was disproved in 2019: these three problems have
non-elementary complexity. To explain what this means,
define inductively the functions expk(x) as follows:

• exp0(x) = x;

• expk+1(x) = 2expk(x).

The complexity class k-EXPSPACE contains the prob-
lems that can be solved by a Turing machine using at most
expk(n) space for inputs of length n. The class of elemen-
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tary problems is defined as

∞⋃
k=0

k − EXPSPACE

In other words, a problem is elementary if there is a num-
ber k and a Turing machine that solves every instance of
the problem of size n using at most expk(n) space.

Some problems related to logical theories have non-
elementary complexity. Logical theories are sets of for-
mulas, typically defined by closing a set of atomic formu-
las under boolean operations and quantification. Without
getting into details, in some logical theories the complex-
ity of deciding if a formula is true is given by a tower of
exponentials whose height is equal to the number of quan-
tifiers in the formula times some constant. Since formulas
can have an arbitrary number of quantifiers, these prob-
lems are non-elementary.

Consider the function that assigns to each n the num-
ber expn(n). This function grows faster than any tower-of-
exponentials function of fixed height. However, the func-
tion belongs to the class of primitive recursive functions.
Loosely speaking, these are the functions computable by
programs using only for-loops. In particular, such pro-
grams are guaranteed to terminate, because no for-loop
can run forever. There are functions that grow even faster
than every primitive-recursive function. The best known
example is the Ackermann function, inductively defined by

A(m,n) =


n+ 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) if m > 0 and n > 0

All known algorithms for Deadlock-freedom, Live-
ness, and Reachability have non-primitive recursive run-
time, that is, their runtime grows faster than any elemen-
tary function.

The rest of the section is the counterpart of Section
3.1.1 for arbitrary Petri nets. The rule of thumb is now:
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All interesting questions about the behaviour of Petri nets are
EXPSPACE-hard. More precisely, they require at least 2O(

√
n)-space.

In particular, all the questions we asked about 1-safe
Petri nets can be reformulated for Petri nets, and turn out to
have at least this space complexity. As in the case of 1-safe
Petri nets, this is a consequence of one single fundamental
fact:

A deterministic, exponentially bounded automaton of size n can be sim-
ulated by a Petri net of sizeO(n2). Moreover, there is a polynomial time
procedure which constructs this net.

In order to answer a question about the computation
of an exponentially space bounded automaton A, we can
construct the net that simulates A, which has size O(n2),
and solve the corresponding question. If the original ques-
tion requires 2n space, as is the case for many properties,
then the corresponding question about nets requires at least
2O(
√
n)-space.

Bounded automata and general Place/Transition Petri
nets do not “fit” well. It is not appropriate to model a cell
of a bounded automaton as a place, as we did in the 1-safe
case, because the cell contains one out of a finite number
of possible symbols, while the place can contain infinitely
many tokens, and so the same information as a nonnegative
integer variable. So we use an intermediate model, namely
counter programs. It is well-known that so-called bounded
counter programs can simulate bounded automata (see be-
low), and we show that Petri nets can simulate bounded
counter programs.

A counter program is a sequence of labelled commands
separated by semicolons. Basic commands have the fol-
lowing form, where l, l1, l2 are labels or addresses taken
from some arbitrary set, for instance the natural numbers,
and x is a variable over the natural numbers, also called a
counter:
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l: x := x+ 1
l: x := x− 1
l: goto l1 unconditional jump
l: if x = 0 then goto l1 conditional jump

else goto l2
l: halt

A program is syntactically correct if the labels of com-
mands are pairwise different, and if the destinations of
jumps correspond to existing labels. For convenience we
can also require the last command to be a halt command.

A program can only be executed once its variables
have received initial values. In this paper we assume that
the initial values are always 0. The semantics of programs
is that suggested by the syntax. The only point to be re-
marked is that the command l : x := x− 1 fails if x = 0,
and causes abortion of the program. Abortion must be dis-
tinguished from proper termination, which corresponds to
the execution of a halt command. Observe in particular
that counter programs are deterministic.

A counter program C is k-bounded if after any step in
its unique execution the contents of all counters are smaller
than or equal to k. We make use of a well known construc-
tion of computability theory:

There is a polynomial time procedure which accepts a determin-
istic bounded automaton A of size n and returns a counter pro-
gram C with O(n) commands simulating the computation of A
on empty tape; in particular, A halts if and only if C halts. More-
over, if A is exponentially bounded, then C is 22

n
-bounded.

Now, it suffices to show that a 22
n

-bounded counter
program of size O(n) can be simulated by a Petri net of
size O(n2). This is the goal of the rest of this section.

Since a direct description of the sets of places and tran-
sitions of the simulating net would be very confusing, we
introduce a net programming notation with a very simple
net semantics. It is very easy to obtain the net correspond-
ing to a program, and execution of a command corresponds
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exactly to the firing of a transition. So we can and will look
at the programming notation as a compact description lan-
guage for Petri nets.

A net program is rather similar to a counter program,
but does not have the possibility to branch on zero; it can
only branch nondeterministically. However, it has the pos-
sibility of transferring control to a subroutine. The basic
commands are as follows:

l: x := x+ 1
l: x := x− 1
l: goto l1 unconditional jump
l: goto l1 or goto l2 nondeterministic jump
l: gosub l1 subroutine call
l: return end of subroutine
l: halt

Syntactical correctness is defined as for counter pro-
grams. We also assume that programs are well-structured.
Loosely speaking, a program is well-structured if it can be
decomposed into a main program that only calls first-level
subroutines, which in turn only call second-level subrou-
tines, etc., and the jump commands in a subroutine can
only have commands of the same subroutine as destina-
tions.6 We do not formally define well-structured pro-
grams, it suffices to know that all the programs of this sec-
tion are well-structured.

We sketch a (Place/Transition) Petri net semantics of
well-structured net programs. The Petri net correspond-
ing to a program has a place for each label, a place for
each variable, a distinguished halt place, and some addi-
tional places used to store the calling address of a subrou-
tine call. There is a transition for each assignment and for
each unconditional jump, and two transitions for each non-
deterministic jump, as shown in Figure 3.5. We illustrate
the semantics of the subroutine command by means of the
program

6Here we consider the main program as a zero-level subroutine, i.e.,
jump commands in the main program can only have commands of the
main program as destinations.
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l

l l l
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l l
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l l l halt
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x x
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: x:=x+1;
: ...

: x:=x-1;
: ...

l: goto l l: haltl: goto l
    or 
   goto l

11

2

Figure 3.5: Net semantics of assignments and jumps

1: gosub 4;
2: gosub 4;
3: halt;
4: goto 5 or goto 6;
5: return;
6: return

The corresponding Petri net is shown in Figure 3.6. Ob-
serve that the places 1 calls 4 and 2 calls 4 are used to re-
member the address from which the subroutine was called.

Clearly, the Petri net corresponding to a net program
with k commands has O(k) places and O(k) transitions,
and its initial marking has sizeO(k). So it is of sizeO(k2).

Let C be a 22
n

-bounded counter program with O(n)
commands. We show thatC can be simulated by a net pro-
gramN(C) withO(n) commands, which corresponds to a
Petri net of size O(n2). Unfortunately, the construction of
N(C) requires quite a bit of low-level programming. But
the reward is worth the hacking effort.
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Figure 3.6: Net semantics of subroutines
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The notion of simulation is not as strong as in the case
of 1-safe Petri nets. In particular, net programs are non-
deterministic, while counter programs are deterministic.
A net program N simulates a counter program C if the
following property holds: C halts (executes the command
halt) if and only if some computation of N halts (other
computations may fail).

Each variable x of N (be it a variable from C or an
auxiliary variable) has an auxiliary complement variable
x. N takes care of setting x = 22

n
at the beginning

of the program. We call the code that takes care of this
Ninit(C).7 The rest of N(C), called Nsim(C), simulates
C and takes care of keeping the invariant x = 22

n − x.
We design Nsim(C) first. This program is obtained

through replacement of each command of C by an ade-
quate net program. Commands of the form x := x + 1
(x := x − 1) are replaced by the net program x := x +
1;x := x − 1 (x := x − 1;x := x + 1). Unconditional
jumps are replaced by themselves. Let us now design a
program

Testn(x,ZERO, NONZERO)

to replace a conditional jump of the form

l: if x = 0 then goto ZERO
else goto NONZERO

The specification of Testn is as follows:

If x = 0 (1 ≤ x ≤ 22
n

), then some execution
of the program leads to ZERO (NONZERO),
and no computation leads to NONZERO (ZERO);
moreover the program has no side-effects: af-
ter any execution leading to ZERO or NONZERO
no variable has changed its value.

Actually, it is easier to design a program Test′n(x,ZERO,
NONZERO) with the same specification but a side-effect:
after an execution leading to ZERO, the values of x and x
are swapped.8 Once Test′n has been designed, we can take:

7Recall that by definition all variables of N have initial value 0.
Therefore, if we need x = 22

n

initially, then we have to design prepro-
cessing code for it.

8Executions leading to NONZERO must still be free of side-effects.
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Program Testn(x, ZERO, NONZERO):

Test′n(x, continue, NONZERO);
continue: Test′n(x, ZERO, NONZERO)

because the values of x and x are swapped 0 times if x > 0
or twice if x = 0, and so Testn has no side effects.

The key to the design of Test′n lies in the following
observation: Since x never exceeds 22

n
, testing x = 0 can

be replaced by nondeterministically choosing

• to decrease x by 1, and if we succeed then we know
that x > 0, or

• to decrease x by 22
n

, and if we succeed then we
know that x = 22

n
, and so x = 0.

If we choose wrongly, that is, if for instance x = 0 holds
and we try to decrease x by 1, then the program fails; this
is not a problem, because we only have to guarantee that
the program may (not must!) terminate, and that if it ter-
minates then it provides the right answer.

Decreasing x by 1 is easy. Decreasing x by 22
n

is the
difficult part. We leave it for a routine Decn to be designed,
which must satisfy the following specification:

If the initial value of s is smaller than 22
n

,
then every execution of Decn fails. If the value
of s is greater than or equal to 22

n
, then all ex-

ecutions terminating with a return command
have the same effect as s := s − 22

n
; s :=

s+22
n

; in particular, there are no side-effects.
All other executions fail.

Test′n proceeds by transferring the value of x to a special
variable sn, and then calling the routine Decn, which de-
creases sn by 22

n
. In this way we need one single routine

Decn, instead of one for each different variable to be de-
creased, which leads to a smaller net program.
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Program Test′n(x, ZERO, NONZERO):

** initially sn = 0 and sn = 22
n

**
goto nonzero or goto loop;

nonzero: x := x− 1; x := x+ 1; goto NONZERO;
loop: x := x− 1; x := x+ 1; sn := sn + 1; sn := sn − 1;

goto exit or goto loop
exit: gosub decn; goto ZERO

** the routine called at decn is Decn(sn) **

It is easy to see that Test′n meets its specification: if
x > 0, then we may choose the nonzero branch and
reach NONZERO. If x = 0, then x = 22

n
. After loop-

ing 22
n

times on loop the values of x, x and sn, sn have
been swapped. The values of sn and sn are swapped again
by the subroutine Decn, and then the program moves to
ZERO. Moreover, if x = 0 then no execution reaches the
NONZERO branch, because the program fails at x := x−1.
If x > 0, then no execution reaches the ZERO branch, be-
cause sn cannot reach the value 22

n
, and so Decn fails.

The next step is to design Decn. We proceed by in-
duction on n, starting with Dec0. This is easy, because it
suffices to decrease s by 22

0
= 2. So we can take

Subroutine Dec0(s):

s := s− 1; s := s+ 1;
s := s− 1; s := s+ 1;
return

Now we design Deci+1 under the assumption that Deci
is already known. The definition of Deci+1 contains two
copies of a program Test′i, called with different parameters.
We define this program by substituting i for n everywhere
in Test′n. Test′i calls the routine Deci at the address deci.
Notice that this is correct, because we are assuming that
the routine Deci has already been defined.

The key to the design of Deci+1 is that decreasing by
22
i+1

amounts to decreasing 22
i

times by 22
i
, because

22
i+1

= (22
i
)2 = 22

i · 22i

So decreasing by 22
i+1

can be implemented by two nested
loops, each of which is executed 22

i
times, such that the



3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS89

body of the inner loop decreases s by 1. The loop vari-
ables have initial values 22

i
, and termination of the loops

is detected by testing the loop variables for 0. This is done
by the Test′i programs.

Subroutine Deci+1(s):

** Initially yi = 22
i

= zi, yi = 0 = zi **
** The initialisation is carried out by Ninit **

outer loop: yi := yi − 1; yi := yi + 1;
inner loop: zi := zi − 1; zi := zi + 1;

s := s− 1; s := s+ 1;
Test′i(zi, inner exit , inner loop);

inner exit: Test′i(yi, outer exit, outer loop);
outer exit: return

Observe also that both instances of Test′i call the same rou-
tine at the same label.

It could seem that Deci+1 swaps the values of yi, yi
and zi, zi, which would be a side-effect contrary to the
specification. But this is not the case. These swaps are
compensated by the side-effects of the ZERO branches of
the Test′i programs! Notice that these branches are now
the inner exit and outer exit branches. When the
program leaves the inner loop, Test′i swaps the values of
zi and zi. When the program leaves the outer loop, Test′i
swaps the values of yi and yi.

This concludes the description of the program Testn,
and so the description of the programNsim(C). It remains
to design Ninit(C). Let us first make a list of the initiali-
sations that have to be carried out. Nsim(C) contains

• the variables x1, . . . , xl of C with initial value 0;
their complementary variables x1, . . . , xl with ini-
tial value 22

n
;

• a variable s with initial value 0; its complementary
variable s with initial value 22

n
;

• two variables yi, zi for each i, 0 ≤ i ≤ n − 1,
with initial value 22

i
; their complementary variables

yi, zi for each i, 0 ≤ i ≤ n− 1, with initial value 0.

Now, the specification of Ninit(C) is simple
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Ninit(C) uses only the variables in the list
above; every successful execution leads to a
state in which the variables have the correct
initial values.

Ninit(C) calls programs Inci(v1, . . . , vm) with the follow-
ing specification:

All successful executions have the same effect
as

v1 := v1 + 22
i
;

. . . ;
vm := vm + 22

i

In particular, there are no side-effects.

These programs are defined by induction on i, and are very
similar to the family of Deci programs. We start with Inc0:

Program Inc0(v1, . . . , vm):

v1 := v1 + 1; v1 := v1 + 1;
. . .
vm := vm + 1; vm := vm + 1

and now give the inductive definition of Inci+1:

Program Inci+1(v1, . . . , vm):

** Initially yi = 22
i

= zi, yi = 0 = zi **
outer loop: yi := yi − 1; yi := yi + 1;
inner loop: zi := zi − 1; zi := zi + 1;

v1 := v1 + 1;
. . .
vm := vm + 1;
Test′i(zi, inner exit , inner loop);

inner exit: Test′i(yi, outer exit, outer loop);
outer exit: . . .

It is easy to see that these programs satisfy their spec-
ifications. Now, let us consider Ninit(C). Apparently, we
face a problem: in order to initialise the variables v1, . . . , vm
to 22

i+1
the variables yi and zi must have already been

initialised to 22
i
! Fortunately, we find a solution by just

carrying out the initialisations in the right order:
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Program Ninit(C):

Inc0(y0, z0);
Inc1(y1, z1);
. . .
Incn−1(yn−1, zn−1);
Incn(s, x1, . . . , xl)

This concludes the description of N(C), and it is now
time to analyse its size. Consider Nsim(C) first. It con-
tains two assignments for each assignment ofC, an uncon-
ditional jump for each unconditional jump in C, and a dif-
ferent instance of Testk for each conditional jump. More-
over, it contains (one single instance of) the routines Decn,
Decn−1, . . . , Dec0 (notice that Testn calls Decn, which
calls Decn−1, etc.). Both Testn and the routines have con-
stant length. So the number of commands of Nsim(C) is
O(n).

Ninit(C) contains (one single instance of) the programs
Inci 1 ≤ i ≤ n. The programs Inc1, . . . , Incn−1 have con-
stant size, since they initialise a constant number of vari-
ables. The number of commands of Incn is O(n), since it
initialises O(n) variables.

So we have proved that N(C) contains O(n) com-
mands. It follows that its corresponding Petri net has size
O(n2), which concludes our presentation of Lipton’s re-
sult.
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Chapter 4

Semi-decision
procedures

4.1 Linear systems of equations and lin-
ear programming

In the next two sections we will construct linear systems of
equations with integer or rational coefficients that provide
partial information about our analysis problems. We will
prove propositions like “if the system of equationsA·X ≤
b (we will see how this system looks like) has a rational
positive solution, then the Petri net (N,M0) is bounded”
(sufficient condition), or “if M is reachable in (N,M0),
then the system of equations B ·X = b has a solution over
the natural numbers” (necessary condition). Such propo-
sitions lead to semi-decision procedures to prove or dis-
prove a property. The complexity of these procedures de-
pends on the complexity of solving the different systems
of equations.

We define the size of a linear system of equations A ·
X = b or A ·X ≤ b where A = (aij)i=1,...n,j=1,...,m and
b = (bj)j=1,...,m as∑
{log2|aij | | 1 ≤ i ≤ n, 1 ≤ j ≤ m}+

∑
{log2|bj | | 1 ≤ j ≤ m}

The problem of deciding whether A ·X = b has

• a rational solution can be solved in polynomial time
(though not by means of Gauss elimination!).

93
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• an integer solution can be solved in polynomial time.

• a nonnegative integer solution is NP-complete.

The problem of deciding whether A ·X ≤ b has

• a rational solution can be solved in polynomial time.
1

• an integer solution is NP-complete.

• a nonnegative integer solution is NP-complete.

Given a linear objective function f(X) = c1x1 + . . . cm
we can decide with the same runtime whether there is a
solution Xop that maximizes f(X) and, if so, the value
f(Xop).

4.2 The Marking Equation

Definition 4.2.1 (Incidence matrix)
Let N = (S, T, F ) be a net. The incidence matrix N :
(S × T )→ {−1, 0, 1} is given by

N(s, t) =


0 if (s, t) 6∈ F and (t, s) 6∈ F or

(s, t) ∈ F and (t, s) ∈ F
−1 if (s, t) ∈ F and (t, s) 6∈ F

1 if (s, t) 6∈ F and (t, s) ∈ F

The column N(−, t) is denoted by t, and the row N(s,−)
by s.

Example 4.2.2

1In practice we often use the Simplex algorithm, which has expo-
nential worst-case complexity, but is very efficient for most instances.
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s5

t2

s3

t1

t4t3

s4

s1 s2

t1 t2 t3 t4
s1 −1 0 1 0
s2 −1 0 0 1
s3 1 −1 0 0
s4 0 1 −1 0
s5 0 1 0 −1

Definition 4.2.3 (Parikh-vector of a sequence of transitions)

Let N = (S, T, F ) be a net and let σ be a finite sequence
of transitions. The Parikh-vector σ : T → IN von σ is
defined by

σ(t) = number of occurrences of t in σ

Lemma 4.2.4 (Marking Equation Lemma)
Let N be a net and let M σ−→ M ′ be a firing sequence of
N . Then M ′ = M + N · σ.

Proof. By induction on the length of σ.
Basis: σ = ε. Then M = M ′ and σ = 0
Step: σ = τt for some sequence τ and transition t. Let
M

τ−→ L
t−→M ′. We have

M ′ = L+ t (Definition of t)
= L+ N · t (Definition of t)
= M + N · τ + N · t (Induction hyp.)
= M + N · (τ + t)
= M + N · τt (Definition of Parikh-vector)
= M + N · σ (σ = τt)

�

Example 4.2.5 In the previous net we have (11000)
t1t2t3−−→

(10001), and
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1
0
0
0
1

 =


1
1
0
0
0

+


−1 0 1 0
−1 0 0 1

1 −1 0 0
0 1 −1 0
0 1 0 −1

 ·


1
1
1
0


The marking reached by firing a sequence σ from a

marking M depends only on the Parikh-vector σ. In other
words, if M enables two sequences σ and τ with σ = τ ,
then both σ and τ lead to the same marking.

Definition 4.2.6 (The Marking Equation)
The Marking Equation of a Petri net (N,M0) is M =
M0 + N ·X with variables M and X .

The Marking equation leads to the following semi-algorithms
for Boundedness, b-Boundedness, (Non)-Reachability,
and Deadlock-freedom:

Proposition 4.2.7 (A sufficient condition for boundedness)

Let (N,M0) be a Petri net. If the optimization problem

maximize
∑
s∈S

M(s)

subject to M = M0 + N ·X

has an optimal solution, then (N,M0) is bounded.

Proof. Let n be the optimal solution of the problem. Then
n ≥ ∑

s∈S
M(s) holds for every marking M for which there

exists a vector X such that M = M0 +N ·X . By Lemma
4.2.4 we have n ≥ ∑

s∈S
M(s) for every reachable marking

M , and so n ≥M(s) for every reachable marking M and
every place s. �

Exercise: Change the algorithm so that it checks whether
a given place is bounded.

Proposition 4.2.8 (A sufficient condition for non-reachability)
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Let (N,M0) be a Petri net and let L be a marking of N . If
the equation

L = M0 + N ·X (with only X as variable)

has no solution, then L is not reachable from M0.

Proof. Immediate consequence of Lemma 4.2.4. �

Proposition 4.2.9 (A sufficient condition for deadlock-freedom)

Let (N,M0) be a 1-bounded Petri net whereN = (S, T, F ).
If the following system of inequations has no solution then
(N,M0) is deadlock-free.

M = M0 + N ·X∑
s∈·t

M(s) < |•t| for every transition t.

Proof. We show: if there is a reachable dead marking
M , then M is a solution of the system. By Lemma 4.2.4
and the reachability of M there is a vector X satisfying
M = M0 + N ·X . Since (N,M0) is 1-bounded, we have
M(s) ≤ 1 for every place s. Let t be an arbitrary transi-
titon. Since M does not enable t, we have M(s) = 0 for
at least one place s ∈ •t. Since M does not enable any
transition, we get

∑
s∈·t

M(s) < |•t|. �

Remark 4.2.10 The converses of these propositions do not
hold (that is why they are semi-algorithms!). Counterex-
amples are:

• To Proposition 4.2.7:

s2

t1

s1
t1

s1 0
s2 1

(N,M0) ist bounded but(
0

n

)
=

(
0

0

)
+

(
0

1

)
· n
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for every n (that is, the Marking Equation has a so-
lution for every marking of the form (0, n)).

• To Proposition 4.2.8:

Peterson’s algorithm: the marking (p4, q4,m1 =
true,m2 = true, hold = 1) ist not reachable, but
the Marking Equation has a solution (Exercise: find
a smaller example).

• To Proposition 4.2.9:

Peterson’s algorithm with an additional transition
t satisfying •t = {p4, q4} and t• = ∅. The Petri
net is deadlock free, but the Marking Equation has
a solution for (m1 = true,m2 = true, hold =
1) that satisfies the conditions of Proposition 4.2.9
(Exercise: find a smaller example).

4.3 S- and T-invariants

4.3.1 S-invariants

Definition 4.3.1 (S-invariants)
Let N = (S, T, F ) be a net. An S-invariant of N is a
vector I : S → Q such that I ·N = 0.

Proposition 4.3.2 (Fundamental property of S-invariants)

Let (N,M0) be a Petri net and let I be a S-invariant of N .
If M0

∗−→M , then I ·M = I ·M0.

Proof. We have M0
σ−→ M for some firing sequence σ.

By the Marking Equation Lemma we get

M = M0 + N · σ

and so

I ·M = I ·M0 + I ·N · σ (Marking Equation)
= I ·M0 (I ·N = 0)

�
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s2s1

t1 t2 t3

s4s3

Figure 4.1

The value of the expression I ·M is therefore the same
for every reachable marking M , and so it constitutes an
invariant of (N,M0).

Example 4.3.3 We compute the S-invariants of the net of
Figure 4.1

The incidence matrix is:

t1 t2 t3
s1 1 −1 0
s2 0 −1 1
s3 −1 1 0
s4 0 1 −1

We compute the solutions of the system of equations

(i1, i2, i3, i4) ·


1 −1 0
0 −1 1
−1 1 0

0 1 −1

 = 0

The general form of the S-invariants is therefore (x, y, x, y)
with x, y ∈ Q

The following propositions are an immediate conse-
quence of the definition of S-invariants:

Proposition 4.3.4 The S-invariants of a net form a vector
space over the real numbers.

This definition of S-invariant is very suitable for ma-
chines, but not for humans, who can only solve very small
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s3

s1

t3

s4

t2

t1

s2

Figure 4.2

systems of equations by hand. There is an equivalent def-
inition which allows people to decide, even for nets with
several dozens of places, if a given vector is an S-invariant.

Proposition 4.3.5 I is an S-invariant of N = (S, T, F )
iff. ∀t ∈ T :

∑
s∈•t

I(s) =
∑
s∈t•

I(s).

Proof. I · N = 0 is equivalent to I · t = 0 for every
transition t. So for every transition t we have: I · t =∑
s∈t•

I(s)− ∑
s∈•t

I(s). �

Example 4.3.6 We show that I = (1, 1, 2, 1) is an S-invariant
of the net of Figure 4.2. The condition of Proposition 4.3.5
must hold for transitions t1, t2 und t3.

• Transition t1: I(s1) + I(s2) = I(s3) = 2.

• Transition t2: I(s3) = I(s1) + I(s4) = 2.

• Transition t3: I(s3) = I(s4) + I(s2) = 2.

With the help of S-invariants we can give sufficient
conditions for boundedness and necessary conditions for
liveness and for the reachability of a marking.
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Definition 4.3.7 (Semi-positive and positive S-invariants)

Let I be an S-invariant of N = (S, T, F ). I is semi-
positive if I ≥ 0 and I 6= 0, and positive if I > 0 (that is,
if I(s) > 0 for every s ∈ S). The support of an S-invariant
is the set 〈I〉 = {s ∈ S | I(s) > 0}.

Proposition 4.3.8 [A sufficient condition for boundedness]

Let (N,M0) be a Petri net. If N has a positive S-invariant
I , then (N,M0) is bounded. More precisely: (N,M0) is
n-bounded for

n = max

{
I ·M0

I(s)
| s is a place of N

}
Proof. Let M be any reachable marking. By the funda-
mental property of S-invariants we have I ·M = I ·M0.
Let s be an arbitrary place of N . Since I > 0 we have
I(s) ·M(s) ≤ I ·M = I ·M0 and M(s) ≤ I·M0

I(s) . �

Proposition 4.3.9 [A necessary condition for liveness]
If (N,M0) is live, then I ·M0 > 0 for every semi-positive
S-invariant of N .

Proof. Let I be a semi-positive S-invariant and let s be a
place of 〈I〉. Since (N,M0) is live, some reachable mark-
ing M satisfies M(s) > 0. Since I is semi-positive, we
have I ·M ≥ I(s) ·M(s) > 0. Since I is a S-invariant,
we get I ·M0 = I ·M > 0 �

These two propositions lead immediately to semi-algorithms
for Boundedness and Liveness.

Definition 4.3.10 (The ∼ relation)
Let M and L be markings and let I be a S-invariant of a
net N . M und L agree on I if I ·M = I · L. We write
M ∼ L if M and L agree on all invariants of N .

Proposition 4.3.11 [A necessary condition for reachabil-
ity]
Let (N,M0) be a Petri net. M ∼ M0 holds for every
M ∈ [M0〉.
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Proof. Follows from the fundamental property of S-invariants.
�

The following theorem allows one to decide if M ∼ L
holds for two given markings M and L.

Theorem 4.3.12 LetN be a net and letM,L be two mark-
ings of N .
M ∼ L iff the equation M = L + N · X has a rational
solution.

Proof. (⇒): Since M ∼ L, we have I · (L−M) = 0 for
every S-invariant I .

We now recall a well-known theorem of linear algebra.
Given a n ×m matrix A, let U = {u ∈ Nn | u · A = 0},
and let V = {v ∈ Nm | u · v = 0 for every u ∈ U}. Then
both U and V are vector spaces, and the columns of A
contain a basis of V .

If we take A := N, then U is the set of S-invariants
of N , and so, by the theorem, the columns of N contain a
basis of the vector space of vectors v satisfying I · v = 0
for every S-invariant I . In particular, since (L−M) is one
of these vectors, (L −M) is a linear combination over Q
of the columns of N, and so the equation N·X = (L−M)
has a rational solution.

(⇐) : Let I be an S-invariant of N . Since I ·N = 0 we
have I · L = I ·M + I ·N ·X = I ·M . �
We also have the following consequences:

M is reachable from L
6⇑ ⇓

M = L+ N ·X has a solution X ∈ N|T |
6⇑ ⇓

M = L+ N ·X has a solution X ∈ Q|T |
m

M ∼ L

4.3.2 T-invariants

Definition 4.3.13 (T-invariants)
Let N = (S, T, F ) be a net. A vector J : T → Q is a
T-invariant of N if N · J = 0.
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Proposition 4.3.14 J is a T-invariant of N = (S, T, F )
iff ∀s ∈ S :

∑
t∈•s

J(t) =
∑
t∈s•

J(t).

Proposition 4.3.15 [Fundamental property of T-invariants]

Let N be a net, let M be a marking of N , and let σ be a
sequence of transitions of N enabled at M . The vector σ
is a T-invariant of N iff M σ−→M .

Proof. (⇒) : Let M ′ be the marking satisfying M σ−→
M ′. By the Marking Equation we have M ′ = M +N ·σ.
Since N · σ = 0 we get M ′ = M

(⇐) : By the Marking Equation we have M = M +N ·σ
and so N · σ = 0. �

Example 4.3.16 We compute the T-invariants of the net of
Figure 4.1 as the solutions of the system of equations

1 −1 0
0 −1 1
−1 1 0

0 1 −1


 j1

j2
j3

 = 0

The general form of the T-invarints is (x, x, x), where x ∈
Q.

Using T-invariants we obtain a necessary condition for
well-formedness of a net:

Theorem 4.3.17 [Necessary condition for well-formedness]

Every well-formed net has a positive T-invariant.

Proof. Let N be a well-formed net and let M0 be a live
and bounded marking ofN . By liveness there is an infinite
firing sequence σ1σ2σ3 · · · such that every σi is a finite
firing sequence containing all transitions of N . We have

M0
σ1−→M1

σ2−→M2
σ3−→ . . .

By boundedness there are indices i < j such that Mi =
Mj . So the sequence σi+1 . . . σj satisfies

Mi

σi+1...σj
−−→ Mi
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t3

s3

t5t1

t2

s1

t4

s4s2

Figure 4.3

and so J = σi+1 + . . .+σj is a T-invariant of N . Further,
J is positive because every transition occurs at least once
in σi+1 . . . σj . �

4.4 Siphons and Traps

4.4.1 Siphons

Definition 4.4.1 (Siphon)
Let N = (S, T, F ) be a net. A set R ⊆ S of places is a
siphon of N if •R ⊆ R•. A siphon R is proper if R 6= ∅.

{s1, s2} is a siphon of the net of Figure 4.3 because

•{s1, s2} = •s1 ∪ •s2 = {t2} ∪ {t1} = {t1, t2}

und

{s1, s2}• = s•1 ∪ s•2 = {t1} ∪ {t2, t3} = {t1, t2, t3}

Proposition 4.4.2 [Fundamental property of siphons]
Let R be a siphon of a net N , and let M σ−→ M ′ be a
firing sequence of N . If M(R) = 0, then M ′(R) = 0.

Proof. Since •R ⊆ R•, the transitions that can mark R
can only occur at markings that already mark R. �

Loosely speaking, a siphon that becomes unmarked (or
“empty”), remains unmarked forever.
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Corollary 4.4.3 [A necessary condition for reachability]
If M is reachable in (N,M0), then for every siphon R, if
M0(R) = 0 then M(R) = 0.

We can easily check in polynomial time if this condi-
tion holds. For this we first observe that, if R1 and R2 are
siphons of N , then so is R1 ∪ R2 (exercise). It follows
that there exists a unique largest siphon Q0 unmarked at
M0 (more precisely, R ⊆ Q0 for every siphon R such that
M0(R) = 0). We claim that the condition holds if and
only if M(Q0) = 0.

• If the condition holds, then, since M0(Q0) = 0 by
definition, we get M(Q0) = 0.

• If the condition does not hold, then there is a siphon
R such that M0(R) = 0 and M(R) > 0. Since
R ⊆ Q0, we also have M(Q0) > 0.

The siphon Q0 can be determined with the help of the
following algorithm, which computes the largest siphon Q
contained in a given set R of places—it suffices then to
choose R as the set of places unmarked at M0.

Input: A net N = (S, T, F ) and R ⊆ S.
Output: The largest siphon Q ⊆ R.
Initialization: Q := R.

begin
while there are s ∈ Q and t ∈ •s such that t /∈ Q• do

Q : = Q \ {s}
endwhile

end

Exercise: Show that the algorithm is correct. That is,
prove that the algorithm terminates, and that after termina-
tion Q is the largest siphon contained in R.

Proposition 4.4.4 [A necessary condition for liveness]
If (N,M0) is live, then M0 marks every proper siphon of
N .
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Proof. Let R be a proper siphon of N and let s ∈ R.
Since we assume that N is connected, •s ∪ s• 6= ∅, and,
since R is a siphon, s• 6= ∅. Let t ∈ s• 6= ∅. By liveness
some reachable marking enables t, and so some reachable
marking marks s, and therefore also the siphon R. By
Proposition 4.4.3 the initial marking M0 also marks R. �
Again, the condition can be checked with the help of the
algorithm above: the condition holds if and only if Q0 =
∅. We now look at deadlock-freedom. We can obtain a
sufficient condition for it, but not one that is easy to check.

Proposition 4.4.5 If M is a dead marking of N , then the
set of places unmarked at M is a siphon of N .

Proof. Let R = {s | M(s) = 0}. For every transition
t there is a place s ∈ •t such that M(s) = 0 (otherwise
t would be enabled). So R• contains all transitions of N ,
and therefore •R ⊆ R•. �

Corollary 4.4.6 [A sufficient condition for deadlock-freedom]
Let (N,M0) be a Petri net. If every reachable marking
marks all siphons of N , then (N,M0) is deadlock-free.

4.4.2 Traps

Definition 4.4.7 (Trap)
Let N = (S, T, F ) be a trap. A set R ⊆ S of places is a
trap if R• ⊆ •R. A trap R is proper if R 6= ∅.

{s3, s4} is a trap of the net of Figure 4.3.

Proposition 4.4.8 [Fundamental property of traps]
Let R be a trap of a net N and let M σ−→ M ′ be a firing
sequence of N . If M(R) > 0, then M ′(R) > 0.

Proof. Since •R ⊆ •R, transitions that take tokens from
R put tokens in R. �

So, loosely speaking, marked traps stay marked. No-
tice, however, that this does not mean that the number of
tokens of a trap cannot decrease. The number can go up or
down, just not become 0.
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Corollary 4.4.9 [A necessary condition for reachability]
If M is reachable in (N,M0), then for every trap R, if
M0(R) > 0 then M(R) > 0.

As in the case of siphons, we can check in polynomial
time if this condition holds. If R1 and R2 are traps of N ,
then so is R1 ∪ R2 (exercise). So there exists a unique
largest trapQ0 marked atM0 (more precisely, R ⊆ Q0 for
every trap R such that M(R) > 0). It is easy to see that
the condition holds if and only if M0(Q0) > 0 (exercise).

To compute the largest trap unmarked at M , we can
transform the algorithm that computes the largest siphon
contained in a given set of places into an algorithm for
computing the largest trap (exercise).

Recall that checking the sufficient condition for deadlock-
freedom was computationally expensive, because of the
form “for every reachable marking ...”. Combining siphons
and traps we obtain an easier-to-check condition.

Proposition 4.4.10 [A sufficient condition for deadlock-
freedom]
Let (N,M0) be a Petri net. If every proper siphon of N
contains a trap marked at M0, then (N,M0) is deadlock-
free.

Proof. Easy consequence of Corollary 4.4.6 and Proposi-
tion 4.4.8. �

The siphon-trap condition cannot be checked in poly-
nomial time unless P=NP (whether every proper siphon
contains a marked trap is an NP-complete problem), but
can be checked with the help of a SAT-solver (see “New
algorithms for deciding the siphon-trap property” by O.
Oanea, H. Wimmel, and K. Wolf).

We finally show how to combine S-invariants and traps
to prove that Peterson’s algorithm satisfies the mutual ex-
clusion property. For the Petri net model of Figure 2.8
mutual exclusion means that no reachable marking M sat-
isfies M(p4) ≥ 1 ∧M(q4) ≥ 1. We first compute three
S-invariants:

(1) M(hold = 1) +M(hold = 2) = 1
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(2) M(p2) +M(p3) +M(p4) +M(m1 = f) = 1

(3) M(q2) +M(q3) +M(q4) +M(m1 = f) = 1

and two constraints derived from traps:

(4) M(m1 = f)+M(p2)+M(hold = 1)+M(q3) > 0

(5) M(m2 = f)+M(q2)+M(hold = 2)+M(p3) > 0

Assume now M(p4) ≥ 1 ∧M(q4) ≥ 1 holds. We have:

M(p4) ≥ 1 ∧M(q4) ≥ 1

⇒ {(2), (3)}

M(p2) +M(p3) +M(m1 = f) = 0 ∧ M(q2) +M(q3) +M(m2 = f) = 0

⇒ {(1)}

M(m1 = f) +M(p2)+ M(m2 = f) +M(q2)+
M(hold = 1) +M(q3) = 0 ∨ M(hold = 2) +M(p3) = 0

Contradicts (4) Contradicts (5)



Chapter 5

Petri net classes with
efficient decision
procedures

In the three sections of this chapter we study three classes
of Petri nets: S-systems, T-systems, and free-choice sys-
tems. The sections have a similar structure. After the
definition of the class, we introduce three theorems: the
Liveness, Boundedness, and Reachability Theorem. The
Liveness Theorem characterizes the live Petri nets in the
class. The Boundedness Theorem characterizes the live
and bounded systems. The Reachability Theorem char-
acterizes the reachable markings of the live and bounded
systems. The proof of the theorems requires some re-
sults about the structure of S- and T-invariants of the class,
which we also present.

The theorems immediately yield decision procedures
for Liveness, Boundedness and Reachability whose com-
plexity is much lower than those for general Petri nets.

At the end of the section we present a final theorem,
the Shortest Path Theorem, which gives an upper bound
for the length of the shortest firing sequence leading to a
given reachable marking.

The reader may ask why boundedness only for live
Petri nets, and why reachability only for live and bounded
Petri nets. A first reason is that, in many application ar-
eas, a Petri net model of a correct system must typically

109
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be live and bounded, and so, when one of these prop-
erties fails, it does not make much sense to further ana-
lyze the model. The second reason is that, interestingly,
the general characterization of the bounded systems or the
reachable markings is more complicated and less elegant
than the corresponding characterization for live or live and
bounded Petri nets.

The proofs of the theorems are very easy for S-systems,
a bit more involved for T-systems, and relatively complex
for free-choice systems. For this reason we just sketch the
proofs for S-systems, explain the proofs in some detail for
T-systems, and omit them for free-choice systems.

5.1 S-Systems

Definition 5.1.1 (S-nets, S-systems) A netN = (S, T, F )
is a S-net if |•t| = 1 = |t•| for every transition t ∈ T . A
Petri net (N,M0) is a S-system if N if N is a S-net.

Proposition 5.1.2 (Fundamental property of S-systems)

Let (N,M0) be a S-system with N = (S, T, F ). Then
M0(S) = M(S) for every reachable marking M .

Proof. Every transition consumes one token and produces
one token. �

Theorem 5.1.3 [Liveness Theorem] A S-system (N,M0)
where N = (S, T, F ) is live iff N is strongly connected
and M0(S) > 0.

Proof. (Sketch.)
(⇒): If N is not strongly connected, then there is an arc
(s, t) such that N has no path from t to s. For every
marked place s′ such that there is a path from s′ to s, we
fire the transitions of the path to bring the tokens in s′ to s,
and then fire t to empty s. We have then reached a mark-
ing from which no tokens can “travel” back to s, and so a
marking from which t cannot occur again. So (N,M0) is
not live.
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If M0 marks no places, then no transition can occur,
and (N,M0) is not live.

(⇐): If N is strongly connected and M0 puts at least
one token somewhere, then the token can freely move,
reach any other place, and so enable any transition again.
�

Theorem 5.1.4 [Boundedness Theorem] A live S-system
(N,M0) where N = (S, T, F ) is b-bounded iff M0(S) ≤
b.

Proof. Trivial. �

Exercise: give a counterexample for non-live S-systems.

Theorem 5.1.5 [Reachability Theorem] Let (N,M0) be a
live S-system and let M be a marking of N . M is reach-
able from M0 iff M0(S) = M(S).

Proof. N is strongly connected by Proposition 5.1.3.
So we are free to distribute the tokens of M0 in an arbi-
trary way, and reach any marking M , as long as M(S) =
M0(S). �

Proposition 5.1.6 [S-invariants of S-nets] LetN = (S, T, F )
be a connected S-net. A vector I : S → Q is a S-invariant
of N iff I = (x, . . . , x) for some x ∈ Q.

Proof.
Each transition t ∈ T has exactly one input place st

and an output place s′t. So we have∑
s∈•t

I(s) = I(st) and
∑
s∈t•

I(s) = I(s′t)

and therefore

I is a S-invariant
⇔ {Proposition 4.3.5 (alternative definition of S-invariant)}
∀t ∈ T : I(st) = I(s′t)

⇔ {N is connected}
∀s1, s2 ∈ S : I(s1) = I(s2)

⇔ { }
∃x ∈ Q∀s ∈ S : I(s) = x.
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�

5.2 T-systems

Definition 5.2.1 (T-nets, T-systems) A netN = (S;T, F )
is a T-net if |•s| = 1 = |s•| for every place s ∈ S. A sys-
tem (N,M0) is a T-system if N is a T-net.

Notation: Let γ be a circuit of a net N and let M be a
marking of N . We denote by M(γ) the number if tokens
of γ under M , that is, M(γ) =

∑
s∈γM(s).

Proposition 5.2.2 (Fundamental property of T-systems)
Let γ be a circuit of a T-systems (N,M0) and let M be a
reachable marking. Then M(γ) = M0(γ).

Proof. Firing a transition does not change the number of
tokens of γ. If the transition does not belong to the cir-
cuit, then the distribution of tokens in the circuit does not
change. If the transition belongs to the circuit, then it re-
moves one token from a place of the circuit, and adds a
token to another place. The token count does not change.
�

5.2.1 Liveness

Theorem 5.2.3 [Liveness Theorem] A T-system (N,M0)
is live iff M0(γ) > 0 for every circuit γ of N .

Proof.
(⇒) Let γ be a circuit with M0(γ) = 0. By Proposi-

tion 5.2.2 we have M(γ) = 0 for every reachable marking
M . So no transition of γ can ever occur.

(⇐) Let t be an arbitrary transition and let M be a
reachable marking. We show that some marking reachable
from M enables t. Let SM be the set of places s of N
satisfying the following property: there is a path from s
to t that contains no place marked at M . We proceed by
induction on |SM |. Basis: |SM | = 0. Then M(s) > 0 for
every place s ∈ • t, and so M enables t.
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Step: |SM | > 0. By the fundamental property of T-
systems, every circuit of N is marked at M . So there is
a path Π such that:

(1) Π leads to t;

(2) M marks no place of Π;

(3) Π has maximal length (that is, no path longer than
Π satisfies (1) and (2)).

Let u be the first element of Π. By (3) u is a transition and
M marks all places of •u. So M enables u. Moreover, we
have u 6= t because M does not enable t. Let M u−→M ′.
We show that SM ′ ⊂ SM , and so that |SM ′ | < |SM |.

1. SM ′ ⊆ SM
Let s ∈ SM ′ . We show s ∈ SM . There is a path
Π′ = s . . . t containing no place marked at M ′. As-
sume Π′ contains a place r marked at M . Since
M ′(r) = 0 and M u−→ M ′ we have u ∈ r• and
so {u} = r•. So u is the successor of r in Π′. Since
u 6= t, M ′ marks the successor of u in Π′, contra-
dicting the definition of Π′.

2. SM ′ 6= SM . Let s be the successor of u in Π. Then
s ∈ SM but s 6∈ SM ′ , because M ′(s) > 0.

By induction hypothesis there is a firing sequence M ′ σ−→
M ′′ such that M ′′ enables t. It follows M u−→ M ′ σ−→
M ′′, and so M ′′ is a marking reachable from M that en-
ables t. �

5.2.2 Boundedness

Theorem 5.2.4 [Boundedness Theorem] A place s of a
live T-system (N,M0) is b-bounded iff it belongs to some
circuit γ such that M0(γ) ≤ b.

Proof. (⇐) Follows from the fundamental property of T-
systems (Proposition 5.2.2).
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(⇒) LetM be a reachable marking such thatM(s) is max-
imal. We have M(s) ≤ b. Define the marking L as fol-
lows:

L(r) =

{
M(r) if r 6= s
0 if r = s

We claim that (N,L) is not live. Otherwise there would be
a firing sequence L σ−→ L′ such that L′(s) > 0, and by the
Monotonicity Lemma we would haveM σ−→M ′ for some
marking M ′ satisfying M ′(s) = L′(s) + M(s) > M(s),
contradicting the maximality of M(s). By the Liveness
Theorem some circuit γ is unmarked at L but marked at
M . Since L and M only differ in the place s, the circuit γ
contains s. Further, s is the only place of γ marked at M .
SoM(γ) = M(s), and sinceM(s) ≤ bwe getM(γ) ≤ b.

�

Corollary 5.2.5 Let (N,M0) be a live T-system

1. A place of N is bounded iff it belongs to some cir-
cuit.

2. Let s be a bounded place. Then

max{M(s) |M0
∗−→M} = min{M0(γ) | γ contains s}

3. (N,M0) is bounded iff N is strongly connected.

Proof. Exercise �

5.2.3 Reachability

We need to have a closer look at the T-invariants of T-
systems.

Proposition 5.2.6 [T-invariants of T-nets] LetN = (S, T, F )
be a connected T-net. A vector J : T → Q is a T-invariant
iff J = (x . . . x) for some x ∈ Q.

Proof. Dual of the proof of Proposition 5.1.6. �
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Theorem 5.2.7 [Reachability Theorem] Let (N,M0) be
a live T-system. A marking M is reachable from M0 iff
M0 ∼M .

Proof. (⇒) Proposition 4.3.11
(⇐) By Theorem 4.3.12 there is a rational vector X such
that

M = M0 + N.X (5.1)

The vector J = (1, 1, . . . , 1) is a T-invariant of N (Propo-
sition 5.2.6). So we have

N · (X + λJ) = N ·X

for every λ ∈ Q. So without loss of generality we can
assume X ≥ 0.
Let T be the set of transitions of N . We show:

(1) There is a vector Y : T → IN such that M = M0 +
N · Y . Let Y be the vector with Y (t) = dX(t)e for
every transition t (dxe denotes the smallest integer
larger than or equal to x). By (5.1) we have

M(s) = M0(s) +X(t1)−X(t2)

for every place s, where {t1} = •s and {t2} = s•.
Both M(s) and M0(s) are integers. By the defini-
tion of Y we get

X(t1)−X(t2) = Y (t1)− Y (t2)

So M(s) = M0 + Y (t1) − Y (t2), which implies
M = M0 + N · Y .

(2) M0
∗−→M

By induction over |Y | = ∑t∈T Y (t).
Basis: |Y | = 0. Then Y = 0 and M = M0.
Step: |Y | > 0.
We show that M0 enables some transition of 〈Y 〉.
Let

Sy = {s ∈ •〈Y 〉 |M0(s) = 0}
Let s ∈ Sy . ByM0(s) = 0 andM0+N ·Y = M ≥
0 we have:
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if some transition of s• belongs to 〈Y 〉,
then some transition of •s belongs to 〈Y 〉.
(*)

Let Π be a path of maximal length containing places
of Sy and transitions of 〈Y 〉 (such a path exists, be-
cause otherwiseN would contain a circuit unmarked
at M0). By (*), the first node of Π is a transition
t ∈ 〈Y 〉, and no place of •t belongs to Sy. So M0

marks every place of •t, that is, M0 enables t.

Let M0
t−→M1. We have

M1 + N(Y − t) = M

where
|Y − t| = |Y | − 1 < |Y |

By induction hypothesis we haveM1
∗−→M . Since

M0
t−→M1

∗−→M , we get M0
∗−→M .

�

5.2.4 Other properties

The theorems we have introduced have many interesting
consequences. Her are two of them.

Theorem 5.2.8 Let N be a strongly connected T-net. For
every marking M0 the following statements are equiva-
lent:

(1) (N,M0) is live.

(2) (N,M0) is deadlock-free.

(3) (N,M0) has an infinite firing sequence.

Proof. (1)⇒ (2)⇒ (3) follow immediately from the def-
initions. We show (3)⇒ (1).

Let M0
σ−→ be an infinite firing sequence. We claim

that every transition of N occurs in σ. Since N is strongly
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connected, (N,M0) is bounded (Theorem 5.2.4). Let σ =

t1 t2 t3 . . ., and M0
t1−→ M1

t2−→ M2
t3−→ . . .. Since

(N,M0) is bounded, there are indices i and j with i < j
such that Mi = Mj . Let σij be the subsequence of σ
containing the transitions between Mi and Mj . By the
fundamental property of T-invariants (Proposition 4.3.15)
σij is a T-Invariant . By Proposition 5.2.6 there is n ∈ N
such that σij = (n . . . n). So every transition of N occurs
in σij , and so the same holds for σ.

Since every transition ofN occurs in σ, for every place
and every circuit of N some marking reached during the
execution of N marks the place or the circuit. By the
fundamental property of T-systems, all circuits of N are
marked atM0. By the Liveness Theorem (Theorem 5.2.3),
(N,M0) is live. �

Theorem 5.2.9 [Genrich’s Theorem] Let N be a strongly
connected T-net with at least one place and one transition.
There is a marking M0 such that (N,M0) is live and 1-
bounded.

Proof. Since N is strongly connected, any marking that
puts tokens on all places of N is live, because it marks
all circuits (Liveness Theorem), and bounded, because all
markings of N are (Corollary 5.2.5).

Let (N,M) be live and bounded, but not 1-bounded.
We construct another live marking L of N satisfying the
following two conditions:

(1) L(γ) ≤M(γ) for every circuit γ of N , and

(2) L(γ) < M(γ) for at least one circuit γ.

By Theorem 5.2.4, at least one place of N has a smaller
bound under L as under M . Iterating this construction we
obtain a 1-bounded marking of N .

Let s be a non-1-bounded place of (N,M). Some
reachable marking M ′ satisfies M ′(s) ≥ 2. Let L be the
marking that puts exactly one token in s, and as many to-
kens as M elsewhere.

Since M is live, it marks all circuits of N . By con-
struction L also marks all circuits, and so L is also live.
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Condition (1) is a consequence of the definition of L. Con-
dition (2) holds for all circuits containing s (and there is at
least one, because N is strongly connected). �

Finally we prove a result stating that for any two mark-
ings M1, M2 of a 1-bounded T-system (live or not), if M2

is reachable fromM1, then it can be reached fromM1 in at
most n(n−1)/2 steps where n is the number of transitions
of the T-system.

The result is proved with the help of two lemmas.

Definition 5.2.10 Given a sequence σ of transitions, we
denote by A(σ) the set of transitions occurring at least
once in σ.

Lemma 5.2.11 Let (N,M0) be a T-system and letM0
σ1 σ2 t−−−−→

for some sequences σ1σ2 ∈ T ∗, some t ∈ T such that

• t /∈ A(σ1), and

• A(σ2) ⊆ A(σ1).

Then M0
σ1 t σ2−−−−→.

Proof. By induction on the length of σ2. If |σ2| = 0
there is nothing to prove. Assume σ2 = σ′2u for some u ∈
T . We prove M0

σ1 σ′2 t u−−−−−−→, and then the result follows by
applying the induction hypothesis to σ1 σ′2 t.

Let M0
σ1 σ′2−−−−→M1

u−→M2
t−→. Consider two cases:

• u• ∩ •t = ∅. Then t is already enabled at M1, and
we are done.

• u• ∩ •t 6= ∅. Let s ∈ u• ∩ •t. Since u ∈ A(σ2)
and A(σ2) ⊆ A(σ1), we have u ∈ A(σ1). Since
t /∈ A(σ1), we have t /∈ A(σ2). So u occurs at least
twice in σ1 σ2, while t occurs zero times. It follows
M2(s) ≥ 2, and therefore M1(s) ≥ 1. Further, for
every s ∈ •t \ u• we have M1(s) = M2(s) ≥ 1. So
t is already enabled at M1, and we are done.

�
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Lemma 5.2.12 Let (N,M0) be a 1-bounded T-system with
N = (S, T, F ), and let M0

σ−→M . Then there exist se-
quences σ1σ2 such that

(1) M0
σ1 σ2−−−−→M .

(2) no transition occurs more than once in σ1,

(3) A(σ2) ⊆ A(σ1), and

(4) if σ is nonempty then A(σ2) ⊂ A(σ1).

Proof. We first prove that (1)-(3) hold by induction on
|σ|. If |σ| = 0, then take σ1, σ2 = ε. Assume σ = τ t

for some t ∈ T and M0
τ−→M ′ t−→M . By induction hy-

pothesis there are τ1, τ2 such that M0
τ1 τ2−−−→M ′, no tran-

sition occurs more than once in τ1, and A(τ2) ⊆ A(τ1). It
t ∈ A(τ1), then take σ1 = τ1 and σ2 = τ2 t. If t /∈ A(τ1),
then by Lemma 5.2.11 we have M0

τ1 t τ2−−−−→M , and we
take σ1 = τ1 t and σ2 = τ2.

To prove (4), assume we have σ1, σ2 satisfying (1)-(3).
We consider several cases.

• A(σ1) = ∅. Then, by (3), we have σ1 = σ2 = ε,
and (4) holds vacuously.

• A(σ1) = T . IfA(σ2) ⊂ A(σ1) then we are done. If
A(σ2) = A(σ1), then A(σ2) = T , and by (2) both
σ1 and σ2 contains every transition exactly once.
SinceN is a T-system, we then haveM0

σ1−−→M0
σ2−−→M0.

But then we can replace σ2 by ε, and now the pair
ε, σ1 satisfies (1)-(4).

• ∅ 6= A(σ1) 6= T . Since N is 1-bounded, by the
Boundedness Theorem it is strongly connected. So
there is a place s with input and output transitions
t and u, respectively, such that t ∈ A(σ1) and u /∈
A(σ1). By (3) we have u /∈ A(σ2). If t ∈ A(σ2)
then M(s) ≥ 2, contradicting 1-boundedness. So
t /∈ A(σ2), and so A(σ2) ⊂ A(σ1).

�
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Theorem 5.2.13 [Shortest Sequence Theorem] Let (N,M0)
be a b-bounded T-system and let M be a reachable mark-
ing. Then there is an occurrence sequenceM0

σ−→M such
that |sigma| ≤ b · n(n − 1)/2, where n is the number of
transitions of N .

Proof. We only prove the case b = 1. The general case re-
quires a slight generalization of Lemma 5.2.11 and 5.2.12.

By repeated application of Lemma 5.2.12 there exists
an occurrence sequence M0

σ1 σ2 ···σn−−−−−−−→M such that

• σi 6= ε for every 1 ≤ i ≤ n,

• no transition occurs more than once in any of σ1, . . . , σn,
and

• A(σ1) ⊂ A(σ2) ⊂ · · · ⊂ A(σn).

Then we have |σi| ≤ n − i + 1 for every 1 ≤ i ≤ n, and
so |σ| ≤∑n

i=1 i = n(n−1)
2 . �

5.3 Free-Choice Systems

Definition 5.3.1 (Free-Choice nets, Free-Choice systems)
A net N = (S, T, F ) is free-choice if s• × •t ⊆ F for ev-
ery s ∈ S and t ∈ T such that (s, t) ∈ F . A Petri net
(N,M0) is free-choice if N is a free-choice net..

This definition is very concise and moreover symmet-
ric with respect to places and transitions. If the reader finds
it cryptic, the following equivalent definitions may help.

Proposition 5.3.2 [Alternative definitions of free-choice nets]

(1) A net is free-choice if for every two transitions t1, t2:

(t1 6= t2 ∧ •t1 ∩ •t2 6= ∅)⇒ •t1 = •t2

(2) A net is free-choice if for every two places s1, s2:

(s1 6= s2 ∧ s•1 ∩ s•2 6= ∅)⇒ s•1 = s•2
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free−choice not free−choice

Figure 5.1

Proof. Exercise. �

Figure 5.1 illustrates these definitions.
Clearly, S- and T-systems are special cases of free-

choice systems (see Figure 5.2).

Circuits T−systemsS−systems

Free−choice systems

Figure 5.2: Net classes

5.3.1 Liveness

We showed in the last chapter that a Petri net in which
every siphon contains an initially marked trap is deadlock-
free, but the converse does not hold. For free-choice sys-
tems we obtain Commoner’s Theorem, a much stronger
result characterizing liveness.

Theorem 5.3.3 [First part of Commoner’s Liveness The-
orem]
Let (N,M0) be a free-choice system. If every proper

siphon of N contains a trap marked at M0, then (N,M0)
is live.
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Proof. We need the following definitions. Let M be a
marking of N . A transition t is dead at M if it is not
enabled at any marking of [M〉. Let DM denote the set
of transitions dead at M . A transition t is live at M if
t 6∈ DM ′ for every marking M ′ ∈ [M〉. Let LM be the
set of transitions live atM . Notice that a transition may be
neither live nor dead at a marking. We have

• If t ∈ LM and M ′ ∈ [M〉, then t ∈ LM ′ , that is,
live transitions stay live.

• If t ∈ DM and M ′ ∈ [M〉, then t ∈ LM ′ , that is,
dead transitions stay dead.

• If t 6∈ LM ∪DM then there is a marking M ′ reach-
able from M such that t ∈ DM ′ . That is, transitions
that are neither live nor dead may die.

We prove that if (N,M0) is not live, then some proper
siphon of N does not contain any trap marked at M0. Let
T be the set of transitions of N . Since (N,M0) is not
live, then, by the definitions above, there is a marking M
reachable fromM0 such that T = DM ∪LM , that is, every
transition is either live or dead at M , and DM 6= ∅.

We claim: for every transition t ∈ DM there exists
st ∈ •t such that M(st) = 0 and every t′ ∈ •st is dead at
M .

Let St be the set of input places of t not marked at M .
Since t ∈ DM , the set St is nonempty. Since N is free-
choice, for every s ∈ St every transition of s•t is dead at
M (otherwise we could fire t). So along any occurrence
sequence starting at M the number of tokens in each place
of St does not decrease. Therefore, if all transitions of •St
are live at M then we can reach a marking that marks all
of them. But such a marking enables t, contradicting that
t is dead at M . So at least one place st ∈ •t is dead at M ,
which proves the claim.

Let now R = {st | t ∈ DM}. By the claim, and since
DM 6= ∅, the setR is a siphon unmarked atM . IfRwould
contain a trap marked at M0 then, since marked traps re-
main marked, R would be marked at M . So R does not
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s1 s2

s3 s4 s5 s6

s7 s8

Figure 5.3: A free-choice system

contain any trap marked at M0. �

A siphon is minimal if it does not properly contain any
proper siphon. Clearly, the Liveness Theorem still holds if
we replace “siphon” by “minimal siphon”. The net of Fig-
ure 5.3 has four minimal siphons: R1 = {s1, s3, s5, s7},
R2 = {s2, s4, s6, s8}, R3 = {s2, s3, s5, s7} and R4 =
{s1, s4, s6, s8}. R1, R2, R3 and R4 are also traps, and so,
in particular, they contain traps. By the Liveness Theorem,
every marking that marks R1, R2, R3 and R4 is live.

We now proceed to prove the second part of the theo-
rem. We have to show that if some proper siphon R of a
free-choice system (N,M0) does not contain an initially
marked trap, then (N,M0) is not live. If such a siphon
exists, then the maximal trap Q ⊆ R is unmarked at M0,
and so M0 only can mark places of D := R \Q. Loosely
speaking, we construct a firing sequence that “empties” the
places of D without marking the places of Q. In this way
we reach a marking at which the siphon R is empty, which
proves that (N,M0) is not live.



124CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

Figure 5.4: Clusters of the net of Figure 5.3

We need the notion of a cluster.

Definition 5.3.4 (Cluster) Let N = (S, T, F ) be a net. A
cluster is an equivalence class of the equivalence relation
((F ∩ (S × T )) ∪ (F ∩ (S × T ))−1)∗. We denote [x] the
cluster of the node x ∈ S ∪ T .

It follows from the definition that every node of a net
belongs to exactly one cluster, that is, the set of clusters is
a partition of S ∪ T .

Figure 5.4 shows the clusters of the net of Figure 5.3.
The following proposition is easy to prove:

Proposition 5.3.5 Let (N,M0) be a free-choice system with
N = (S, T, F ), and let c be a cluster of c.

(1) (s, t) ∈ F for every s ∈ c ∩ S and t ∈ c ∩ T .
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(2) A marking enables some transition of c iff it enables
every transition of c.

By (2) we can say that M enables a cluster.
The firing sequence σ that empties the siphonRis con-

structed as follows. We define an allocation that assigns to
each cluster c of N containing places of D a transition
of c ∩ T . Intuitively, the allocation is a recipe indicating
which transition to fire: Whenever the transitions of the
cluster are enabled, we fire the allocated transition, and
never any of the others. The sequence σ is constructed by
repeatedly enabling the clusters ofD, which is possible by
liveness, and then firing the allocated transition.

We define allocations.

Definition 5.3.6 (Allocation) Let N = (S, T, F ) be a net
and let C be a set of clusters of N . An allocation of C is a
mapping α : C → T such that α(c) ∈ c for every c ∈ C.

Let C = {[t] | t ∈ D•}. We construct an allocation
α : C → T satisfying the following properties.

(a) α is circuit-free, that is, there is no cycle containing
only places of D and allocated transitions. If there
were such a cycle, then by firing only allocated tran-
sitions we might never be able to empty D, because
tokens in the cycle would never “leave” it.

(b) α does not allocate any transition of •Q. Otherwise
firing this transition would mark the trap Q, which
would make it impossible to empty the siphon.

(c) while there are tokens in D it is always possible to
fire any allocated transition again, without firing any
of the non-allocated transitions.

The recipe to construct an allocation satisfying (a) and
(b) is given in the proof of the following lemma. Notice
that this part does not require the free-choice property.

Lemma 5.3.7 Let N be a net, let R be a set of places of
N , and let Q be the maximal trap included in Q, and let
D = R\Q. LetC = {[t] | t ∈ D•}. There exists a circuit-
free allocation α : C → T such that α(C) ∩ •Q = ∅.
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Proof. By induction on |R|. If |R| = 0 then C = ∅
and we take the empty allocation. If |R| > 0 and R is a
trap then D = ∅, and again C = ∅. If R is not a trap
then there exists t ∈ R• \ •R (intuitively, t is a way-out
through which tokens can leave R). Let R′ = R \ •t, let
Q′ be the maximal trap of R′, let D′ = R′ \ Q′, and let
C ′ = {[t] | t ∈ (D′)•}.

By induction hypothesis there exists an allocationα′ : C ′ →
T , circuit-free for D′, such that α′(C ′) ∩ •Q′ = ∅. Define
α : C → T as follows:

α(c) =

{
t if t ∈ c
α′(c) otherwise

We have to show that α is circuit-free and α(C)∩•Q′ = ∅.
We first prove the following facts, which we leave as an
exercise:

(i) Q is the maximal trap included in R′.

(ii) D ⊆ D′ ∪ •t. (Use (i).)

(iii) C ⊆ C ′ ∪ {[t]}. (Use (ii) and the definition of C.)

(iv) α(C) ⊆ α(C ′) ∪ {t}. Use (iii) and the definition of
α.)

To show that α is circuit-free, assume D ∪ α(C) contains
a circuit γ. By (ii) and (iv) we have D ∪ α(C) ⊆ D′ ∪
α′(C ′) ∪ {t} ∪ •t. By induction hypothesis D ∪ α′(C ′) is
circuit-fee. So γ contains transition t. Since all places of γ
belong to R and t /∈ •R, we have that γ contains no place
of t•, contradicting that γ is a circuit.

To prove α(C)∩ •Q′ = ∅ we first observe that α(C)∩
•Q′ ⊆ (α(C ′)∪{t})∩ •Q′, which is equal to {t}∩ •Q′ by
induction hypothesis, and equal to ∅ because t /∈ •R and
•Q ⊆ •R. �

We now prove that we can find an infinite occurrence
sequence that “respects a given allocation”. This part cru-
cially requires the free-choice property.

Lemma 5.3.8 [Allocation Lemma]
Let (N,M0) be a live free-choice system, let C be a set of
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clusters of N , and let α : C → T be an allocation of C.
There is an infinite occurrence sequence M0

σ−→ such that
σ contains

• infinitely many occurrences of allocated transitions,
and

• no occurrences of non-allocated transitions of C,
i.e., of transitions of

⋃
c∈C c \ {α(c)}.

Proof. We iteratively define occurrence sequences σ0, σ1, σ2, . . .,
and define σ as their concatenation.

Given a markingMi, let τi be a minimal occurrence se-
quence that enables some cluster c ∈ C. The sequence ex-
ists by liveness. By the free-choice property, the sequence
σi = τiα(c) is also a firing sequence. Let Mi+1 be the
marking given by Mi

σi−−→Mi+1. �

Theorem 5.3.9 [Second half of Commoner’s Liveness The-
orem]
Let (N,M0) be a free-choice system. If (N,M0) is live,
then every proper siphon of N contains a trap marked at
M0.

Proof. Let F be a proper siphon of N , and let Q be the
maximal trap included in Q. We prove M0(Q) > 0.

Since (N,M0) is live, we have M0(R) > 0 by Propo-
sition 4.4.4. Let D = R \ Q. If D• = ∅ then D is a trap
and so D ⊆ Q, but then D = ∅ and we are done.

If D• 6= ∅ then let C = {[t] | t ∈ D•}. By Lemma
5.3.7 there is an allocation with domain C and circuit-free
for D satisfying α(C) ∩ •Q = ∅. Let M0

σ−→ be the oc-
currence sequence of Lemma 5.3.8. It is easy to see that

• Q cannot become marked during the occurrence of
σ.
Because transitions of •Q are not allocated, and so
do not occur in σ.

• Q is marked at some point during the occurrence of
σ.
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Since α is circuit-free, there is an allocated transi-
tion t that occurs infinitely often in σ, and whose
input places are not output places of any allocated
transition. So the input places of t must get tokens
from transitions that do not belong to the clusters of
C. But these transitions are necessarily output tran-
sitions of Q.

�

The non-liveness problem for free-choice systems is
NP-complete, and so we cannot expect to find a polyno-
mial algorithm to check the condition of Commoner’s The-
orem:

Theorem 5.3.10 [Complexity]
The problem

Given: A free-choice system (N,M0)
Decide: Is (N,M0) not live?

is NP-complete.

Proof. Membership in NP follows from Commoner’s the-
orem: guess a siphon of N , compute in polynomial time
the maximal trap contained in R, and check that it is un-
marked at M0.

The proof of NP-hardness is by reduction from SAT,
the satisfiability problem for boolean formulas. The re-
duction is illustrated in Figure 5.5, which shows the free-
choice system for the formula

Φ = (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3)

�

5.3.2 Boundedness

Definition 5.3.11 (S-component) Let N = (S, T, F ) be
a net. A subnet N ′ = (S′, T ′, F ′) of N is an S-component
of N if
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False

x1x1

A1 A2 A3

x2 x3x2 x3

C1 C2 C3

Figure 5.5: Free-choice system for the formula Φ
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s1

s3 s5

s7

s2

s4 s6

s8

Figure 5.6: S-components of the net of Figure 5.3

1. N ′ is a strongly connected S-net, and

2. T ′ = •S′ ∪ S′• (where s• = {t ∈ T | (t, s) ∈ F},
and analogously for •s).

Figure 5.6 shows two S-components of the net of Fig-
ure 5.3.

S-components are for free-choice systems what cir-
cuits are for T-systems: firing a transition does not change
the number of tokens of an S-component.

Proposition 5.3.12 Let (N,M0) be a Petri net and letN ′ =
(S′, T ′, F ′) be an S-component of N . Then M0(S

′) =
M(S′) for every marking M reachable from M0.

Proof. Firing a transition either takes no tokens from a
place of the component and adds none, or it takes exactly
one token and adds exactly one token. �

Theorem 5.3.13 [Hack’s Boundedness Theorem]
Let (N,M0) be a live free-choice system. (N,M0) is

bounded iff every place of N belongs to a S-component.
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Proof. (⇐) Exercise

(⇒) (Sketch). We first show that every minimal siphon N
is the set of places of a S-component. Then we show that
every place is contained in some minimal siphon. �

Proposition 5.3.14 [Place bounds]
Let (N,M0) be a live and bounded free-choice system and
let s be a place of N . We have

max{M(s) |M0
∗−→M} =

min{M0(S
′) | S′ is the set of places of a S-component of N}

Proof. Analogous to the Boundedness Theorem for T-
systems. �

Theorem 5.3.10 shows that there is no polynomial al-
gorithm for Liveness (unless P = NP ). Now we ask our-
selves what is the complexity of deciding if a free-choice
system is simultaneously live and bounded. We can of
course first use the decision procedure for liveness, and
then, if the net is live, check the condition of the Bounded-
ness Theorem. But there are more efficient algorithms.1.
The fastest known algorithm runs in O(n · m) time for a
net with n places and m transitions. A not so efficient but
simpler algorithm follows immediately from the next the-
orem:

Theorem 5.3.15 [Rank Theorem]
A free-choice system (N,M0) is live and bounded iff

1. N has a positive S-invariant.

2. N has a positive T-invariant.

3. The rank of the incidence matrix (N) is equal to c−
1, where c is the number of clusters of N .

4. Every siphon of N is marked under M0.
1Compare with this: in order to decide if a number is divisible by

100.000, we can first check if it is divisible by 3125, and, if so, if it is
divisible by 32. However, there is a faster procedure: check if the last
five digits are zeros.
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Proof. Omitted. �

Conditions (1) and (2) can be checked using linear pro-
gramming, condition (3) using well-known algorithms of
linear algebra, and condition (4) with the algorithm of Sec-
tion 4.4.1.

5.3.3 Reachability

The reachability problem is NP-hard for live and bounded
free-choice nets.

Theorem 5.3.16 Reachability is NP-hard for live and bounded
free-choice nets.

Proof. We reduce SAT to the following problem:

Given: A live and bounded free-choice sys-
tem (N,M0) where N = (S, T, F ), two dis-
joint sets T=1, T≥1 ⊆ T , and a marking M .
Decide: IsM reachable fromM0 by means of
a firing sequence that fires each transition of
T=1 exactly once, and each transition of T≥1
at least once?

Figure 5.7 shows the net N , the markings M0 and M ,
and the sets T=1, T≥1 for the formula x1 ∧ (x1 ∨ x2) ∧
(x1 ∨ x2). the formula has three clauses C1, C2, C3. The
black tokens correspond to M0, and the white tokens to
M . Intuitively, the net chooses a variable xi, and assigns it
a value by firing txi or fxi. This sends tokens to the three
modules at the bottom of the figure, one for each clause.
More precisely, for each clause the transition sends exactly
one token to one of the two transitions of the module: if
the value makes the clause true, then the token goes to the
input place of the transition that belongs to T≥1; otherwise
the token goes to the input place of the other transition.
The formula is satisfiable iff the Petri net has a firing se-
quence that fires each transition of T=1 exactly once, (this
corresponds to choosing a truth assignment) and each tran-
sition of T≥1 at least one (so that at least one of the literals
of each clause is true under the assignment).
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x1 x2

tx1 fx1 tx2 fx2

>= 1 >= 1 >= 1

Marking M0

Marking M

C2
C3C1

= 1 = 1

End

Start

Figure 5.7: Result of the reduction for the formula x1 ∧
(x1 ∨ x2) ∧ (x1 ∨ x2)
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0=
> 1

t t 
Marking M

Marking M

Figure 5.8: The first module
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t = 1

Marking M

Marking M0

Figure 5.9: The second module.

Now we reduce the problem above to the reachability
problem for live and bounded free-choice nets. Given a
net with sets T=1, T≥1 ⊆ T , we “merge” each transition
of T≥1 with the transition t≥1 of a separate copy of the
“module” shown in Figure 5.8. Similarly, we merge each
transition of T=1 with the transition t=1 of a separate copy
of the “module” shown in Figure 5.9.

The first module ensures that in order to reach the mark-
ing M the transition t≥1 has to be fired at least once. The
second module ensures that the transition t=1 has to be
fired exactly once. �

As for Commoner’s Theorem, membership in NP is
harder to prove. It follows from this theorem, due to Ya-
masaki et al.

Definition 5.3.17 LetN = (S, T, F ) be a net, and letU ⊆
T . The subnet NU = (S′, T ′, F ′) generated by U is given
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by:

• T ′ = U ,

• S′ = •U ∪ U•, and

• F ′ = F ∩ ((S′ × T ′) ∪ (T ′ × S′)).

Theorem 5.3.18 [Reachability Theorem]
Let (N,M0) be a live and bounded free-choice system. M
is reachable from M0 iff there X ∈ N|T | such that

• M = M0 + N ·X , and

• (NU ,MU ) has no unmarked traps, where U = {t ∈
T | X(t) > 0} and MU is the projection of M onto
the places of NU .

Proof. Omitted. �

Membership in NP can then be proved as follows: Guess
a set U ⊆ T , construct NU , compute in polynomial time
the maximal trap ofNU unmarked atM , check that it is the
empty trap, guess in polynomial time a vector X ∈ N|T |
such that X(t) ≥ 1 for every t ∈ U , and check that it is
a solution of M = M0 + N · X . Proving that the vector
can be guessed in polynomial time follows from the fact
that Integer Linear Programming is also in NP. A more di-
rect proof of membership in NP follows from the Shortest
Sequence Theorem for free-choice systems (see Theorem
5.3.21 below).

For systems satisfying an additional condition there is
a polynomial algorithm. A Petri net (N,M0) is cyclic if,
loosely speaking, it is always possible to return to the ini-
tial marking. Formally: ∀M ∈ [M0〉 : M0 ∈ [M〉. We
have:

Theorem 5.3.19 [Reachability Theorem for Cyclic Free-
Choice Nets]
Let (N,M0) be a live, bounded, and cyclic free-choice

system. A markingM ofN is reachable fromM0 iffM0 ∼
M .
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Proof. Omitted. �

Corollary 5.3.20 The problem

Given: a live, bounded, and cyclic free-choice
system (N,M0) and a marking M
Decide: Is M reachable?

can be solved in polynomial time.

This result is only useful if we are able to check effi-
ciently if a live and bounded free-choice system is cyclic.
The following theorem shows that this is the case:

Theorem 5.3.21 A live and bounded free-choice system
(N,M0) is cyclic iff M0 marks every proper trap of N .

Proof. Omitted. �

5.3.4 Other properties

There is also a Shortest Sequence Theorem for live and
bounded free-choice nets.

Theorem 5.3.22 [Shortest Sequence Theorem]
Let (N,M0) be a b-bounded free-choice system and let
M be a reachable marking. Then there is an occurrence
sequence M0

σ−→M such that |sigma| ≤ b n(n+ 1)(n+
2)/6, where n is the number of transitions of N .

This gives a simpler prove that the reachability prob-
lem for live and bounded free-choice nets is in NP: just
guess in polynomial time an occurrence sequence leading
to M .


