An SMT-based Approach to Fair Termination Analysis

Javier Esparza, Philipp J. Meyer

Technische Universität München

Fair Termination Analysis

- **Tair** Termination: No non-fair infinite execution sequence σ .
- PSPACE-complete for boolean programs.

Fair Termination Analysis

- **F**air termination: No non-fair infinite execution sequence σ .
- PSPACE-complete for boolean programs.

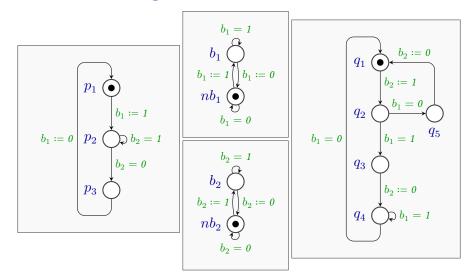
SMT-Based Approach

- Incomplete method based on reduction to feasibility of linear arithmetic constraints.
- Strengthened with refinement cycle which adds mixed linear and boolean constraints.
- Similar method previously applied for safety properties (An SMT-based Approach to Coverability Analysis, CAV14).

Lamport's 1-bit Algorithm for Mutual Exclusion

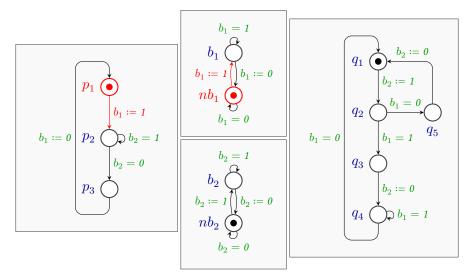
```
procedure Process 1
                                       procedure Process 2
   begin
                                       begin
     b_1 := 0
                                         b_2 := 0
     while true do
                                         while true do
      b_1 := 1
                                         b_2 := 1
                                    q_1:
p_1:
                                       if b_1 = 1 then
     while b_2 = 1 do skip od
                                    q_2:
p_2:
      (* critical section *)
                                             b_2 := 0
p_3:
                                    q_3:
                                             while b_1 = 1 do skip od
       b_1 := 0
                                    q_4:
     od
                                             goto q_1
                                           fi
   end
                                           (* critical section *)
                                    q_5:
                                           b_2 := 0
                                         od
                                       end
```

Communicating Automata Model



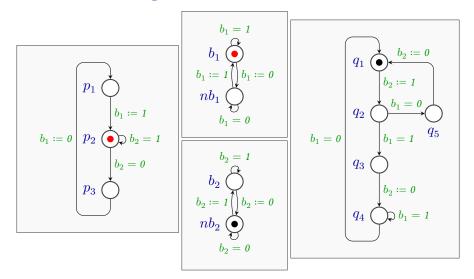
Property: If both processes are executed infinitely often, then the first process should enter the critical section (p_3) infinitely often.

Communicating Automata Model



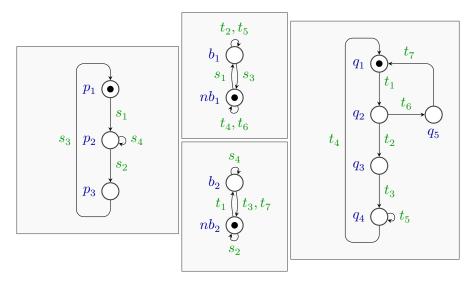
Property: If both processes are executed infinitely often, then the first process should enter the critical section (p_3) infinitely often.

Communicating Automata Model



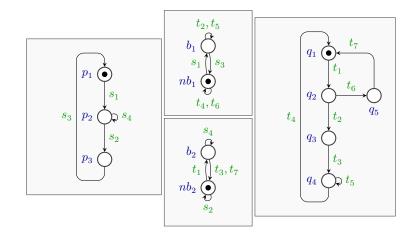
Property: If both processes are executed infinitely often, then the first process should enter the critical section (p_3) infinitely often.

Abstract View of the Model

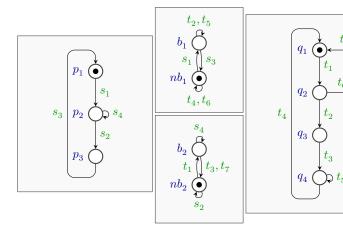


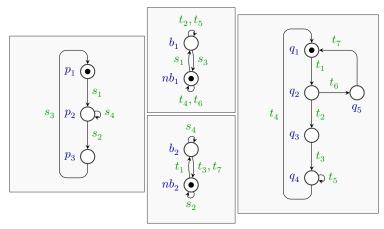
Property: For every infinite transition sequence σ , we have $\varphi(\sigma) = \bigvee_{i=1}^4 (s_i \in \inf(\sigma)) \wedge \bigvee_{i=1}^7 (t_i \in \inf(\sigma)) \implies s_2 \in \inf(\sigma).$

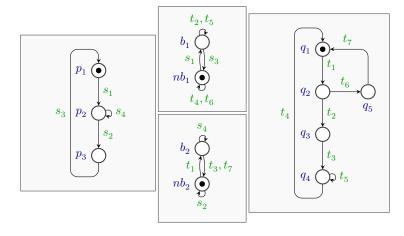
$$\{p_1, nb_1, nb_2, q_1\} \xrightarrow{t_1t_6t_7s_1t_1t_2t_3s_2t_5s_3t_4} \{p_1, nb_1, nb_2, q_1\}$$

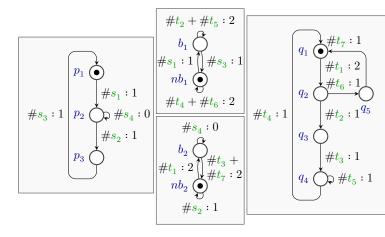


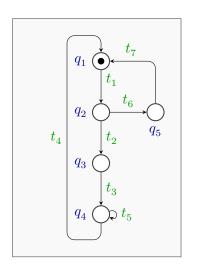
$$\begin{aligned} \{p_1, nb_1, nb_2, q_1\} &\xrightarrow{t_1t_6t_7s_1t_1t_2t_3s_2t_5s_3t_4} \{p_1, nb_1, nb_2, q_1\} \\ & \quad \#t_1 \quad \#t_2 \quad \#t_3 \quad \#t_4 \quad \#t_5 \quad \#t_6 \quad \#t_7 \quad \#s_1 \quad \#s_2 \quad \#s_3 \quad \#s_4 \end{aligned} \\ \#\sigma = \left(\right.$$

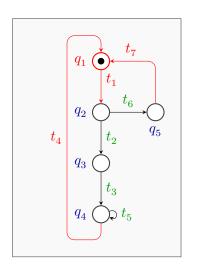




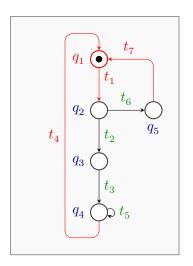




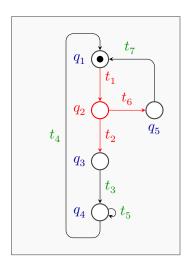




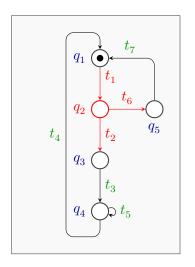
$$q_1: \qquad t_4+t_7=t_1$$



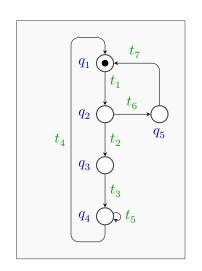
$$q_1: \qquad t_4+t_7=t_1$$

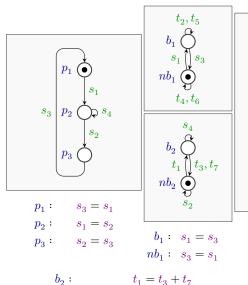


$$\begin{array}{ll} q_1: & & t_4+t_7=t_1 \\ q_2: & & t_1=t_2+t_6 \end{array}$$



$$\begin{array}{lll} q_1: & t_4+t_7=t_1 \\ q_2: & t_1=t_2+t_6 \\ q_3: & t_2=t_3 \\ q_4: & t_3=t_4 \\ q_5: & t_6=t_7 \end{array}$$





 $nb_2: t_3 + t_7 = s_1$

 $\begin{array}{lll} q_1: & t_4+t_7=t_1\\ q_2: & t_1=t_2+t_6\\ q_3: & t_2=t_3\\ q_4: & t_3=t_4\\ q_5: & t_6=t_7 \end{array}$

Termination Constraints

- Accumulate constraints in matrix form as $C \cdot X = 0$.
- If there is an infinite transition sequence σ , then the following constraints have a solution X:

$$\mathcal{C} :: \begin{cases} C \cdot X = 0 \\ X \ge 0 \\ X \ne 0 \end{cases}$$

- If the constraints have no solution, then the program is terminating.
- A solution X is *realizable* if there is a sequence σ with $\#\sigma = X$.

Fair Termination Constraints

- Fairness condition given by boolean formula φ over $t \in \inf(\sigma)$.
- If the program is not fairly terminating, then there is an infinite transition sequence σ satisfying $\sigma \models \neg \varphi$.
- Add constraint $\neg \varphi(X)$ to $\mathcal C$ for fair termination constraints.

Fairness for Lamport's Algorithm

$$\varphi(\sigma) = \bigvee_{i=1}^4 (s_i \in \inf(\sigma)) \land \bigvee_{i=1}^7 (t_i \in \inf(\sigma)) \implies s_2 \in \inf(\sigma)$$

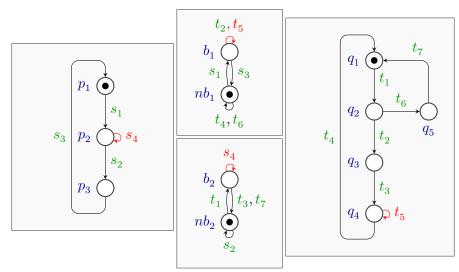
$$\neg \varphi(X) = (s_1 + s_2 + s_3 + s_4 > 0) \land
(t_1 + t_3 + t_4 + t_5 + t_6 + t_7 > 0) \land
(s_2 = 0)$$

Fair Termination Constraints

Fair Termination Constraints: Solution

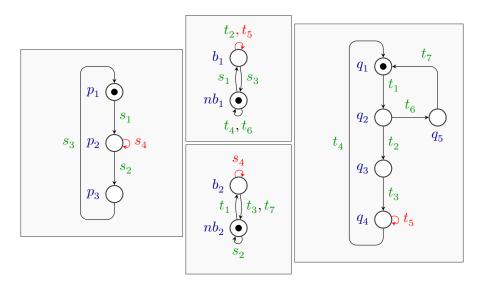
Fair Termination Constraints: Solution

$$X = \begin{pmatrix} t_1 & t_2 & t_3 & t_4 & t_5 & t_6 & t_7 & s_1 & s_2 & s_3 & s_4 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$



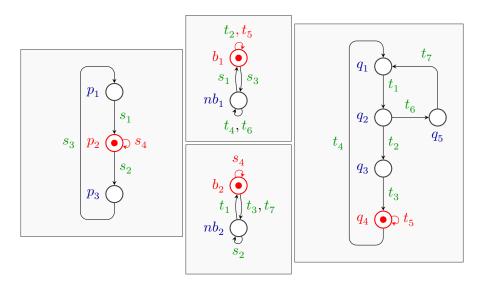
Solution realizable?

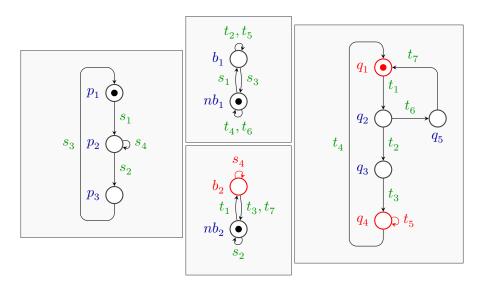
X realized by σ with $\inf(\sigma) = \{s_4, t_5\}$.

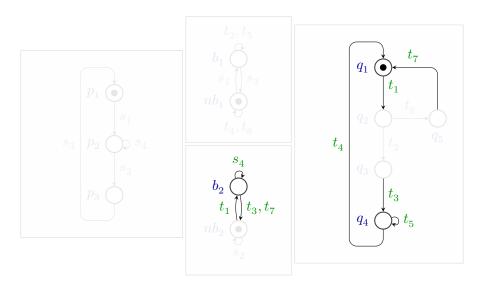


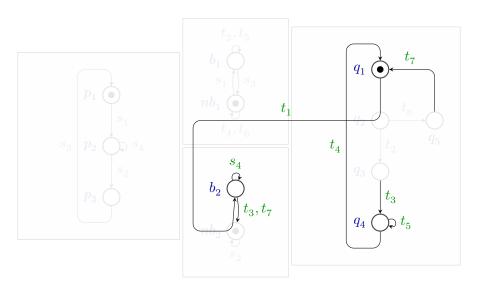
Solution realizable?

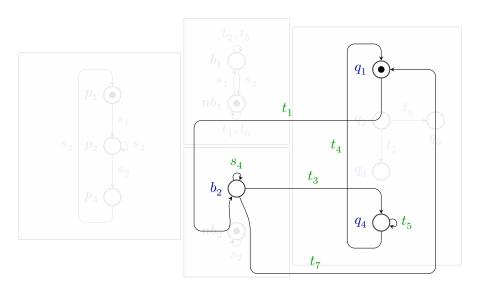
X realized by σ with $\inf(\sigma) = \{s_4, t_5\}$.





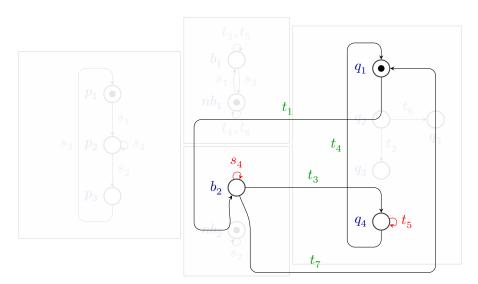






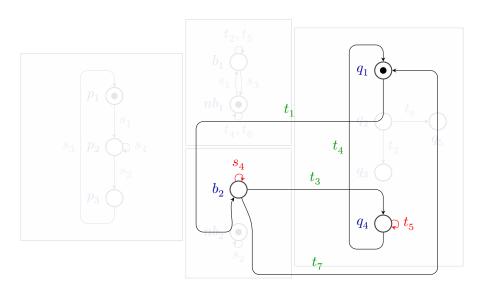
Refinement Constraint

X realized by σ with $\inf(\sigma) = \{s_4, t_5\}$.



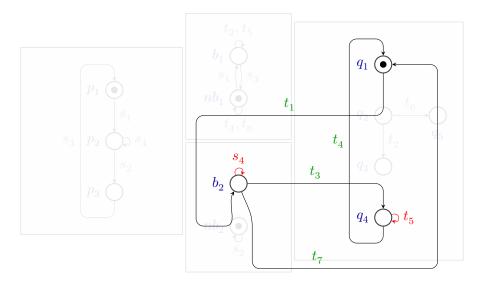
Refinement Constraint

X not realizable \Rightarrow Generate refinement constraint δ .



Refinement Constraint

$$\delta = (s_4 = 0) \vee (t_5 = 0) \vee (t_1 + t_3 + t_4 + t_7 > 0)$$

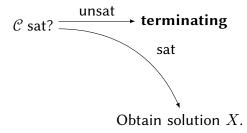


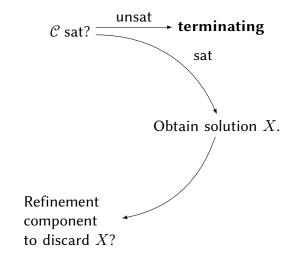
Refinement Loop

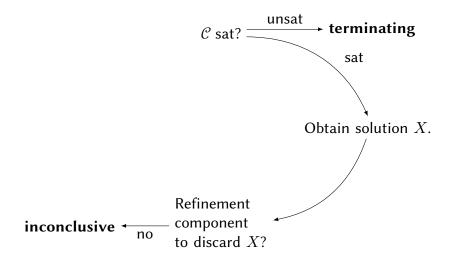
 $\mathcal C$ sat?

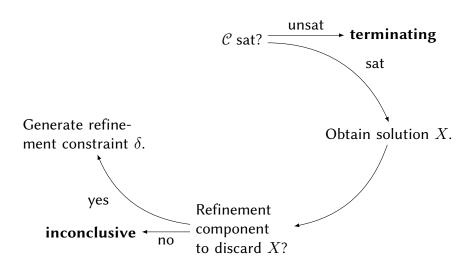
Refinement Loop

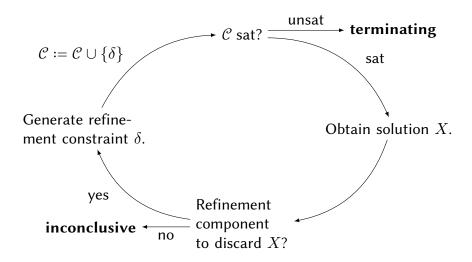
 $_{\mathcal{C} \text{ sat?}} \xrightarrow{\text{unsat}} \text{terminating}$









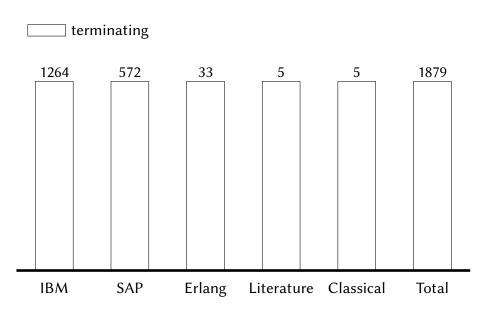


Experimental Evaluation

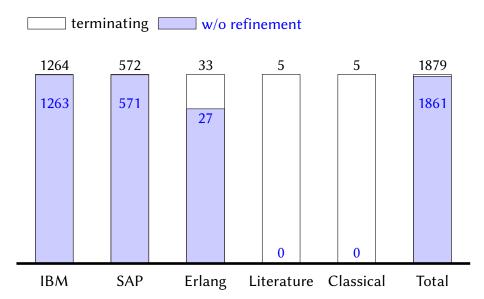
Benchmarks

- IBM/SAP Workflow nets from business process models
 - 1976 examples
 - 1836 terminating
- Erlang Models from the verification of Erlang programs
 - 50 examples, up to 66950 places and 213626 transitions
 - 33 terminating
- Literature Selected examples from the literature
 - 5 examples, with unbounded variables
 - All terminating
- Classical Classic asynchronous programs for mutual exclusion and distributed algorithms
 - 5 examples, scalable in number of processes
 - All fairly terminating

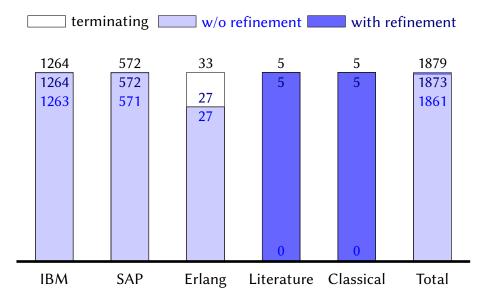
Rate of Success



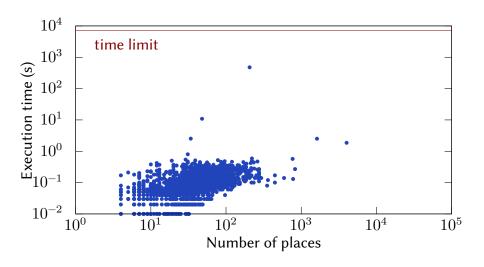
Rate of Success



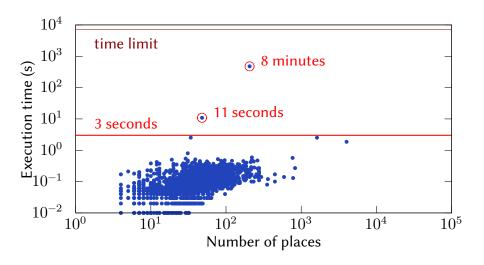
Rate of Success



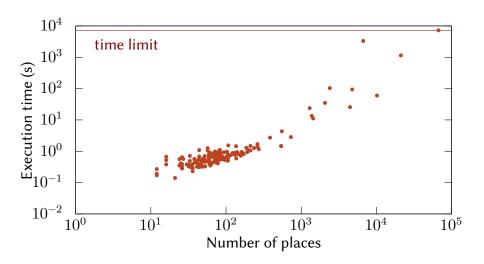
Performance on Positive Examples



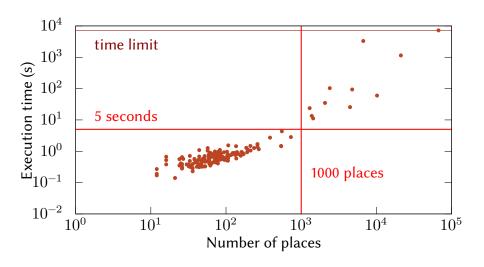
Performance on Positive Examples



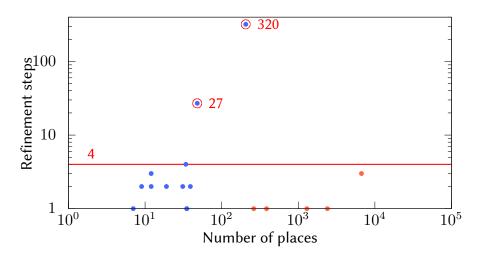
Performance on Negative Examples



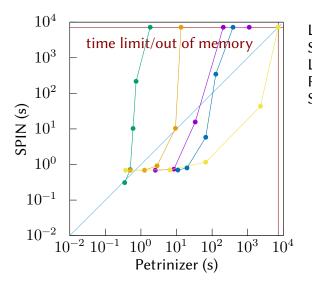
Performance on Negative Examples



Refinement Steps



Comparison with SPIN on Scaled Classical Suite



Leader Election
Snapshot
Lamport
Peterson
Szymanski

Summary

- Fast and effective technique for proving fair termination
- Incomplete, but high degree of completeness
- Large instances can be handled
- Constraints can be used as a certificate of fair termination