Petri nets — Endterm

- You have 90 minutes to complete the exam.
- Answers must be written in a **separate booklet**. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable **pen**. Do not use red or green.
- You are not allowed to use auxiliary means other than pen and paper.
- You can obtain 40 points. You need 17 points to pass.
- Note that we sometimes represent a marking M by the tuple $(M(s_1), M(s_2), \ldots, M(s_n))$.

Question 1 (4+2=6 points)

Consider the following Petri net with weights N = (S, T, W):

Let $M_0 = (0, 1, 0)$ and M = (1, 0, 1). We wish to determine whether M is coverable from M_0 . After one iteration of the backward reachability algorithm, we obtain the minimal basis $X = \{(2, 1, 0), (0, 0, 1)\}$.

- (a) Give the minimal basis Y obtained by executing the next iteration of the backward reachability algorithm from X.
- (b) What can you conclude from Y obtained in (a)?
 - 1. M is coverable from M_0 .
 - 2. M is not coverable from M_0 .
 - 3. None of the above, another iteration must be executed.

Justify your answer.

Question 2 (2+2+2+2=8 points)

Consider the following Petri net N = (S, T, F):

- (a) Give all of the minimal proper traps of N. Explain briefly why no other proper trap is minimal.
- (b) Does N have a positive S-invariant? If so, exhibit one, if not, explain why.
- (c) Prove that M = (5, 13, 7, 15) is not reachable from $M_0 = (15, 3, 17, 4)$.
- (d) Prove that M = (0, 20, 0, 0) is not reachable from $M_0 = (10, 0, 10, 0)$.

Question 3 (5 points)

Recall that 3-SAT is the problem of determining the satisfiabillity of a Boolean formula in conjunctive normal form where clauses have at most three literals.

Give a polynomial time reduction from 3-SAT to the following reachability problem for 1-safe Petri nets:

Given: 1-safe Petri net (N, M_0) and a place s of N.

Determine: does there exist a marking M such that $M_0 \stackrel{*}{\to} M$ and M(s) = 1?

It suffices to explain your reduction informally and to illustrate it for the following formula:

$$\varphi(x_1, x_2, x_3, x_4) = (x_1 \vee \neg x_2 \vee x_4) \wedge (\neg x_1 \vee x_3 \vee x_4).$$

Question 4 (4 points)

The projection of a firing sequence $\sigma \in T^*$ onto $U \subseteq T$ is the sequence $h_U(\sigma)$ obtained by deleting all transitions of σ which do not belong to U. For example, $h_{\{u,v\}}(uvtvt) = uvv$, $h_{\{t\}}(uvtvt) = tt$ and $h_{\{u,v\}}(ttt) = \varepsilon$. The U-traces of a Petri net (N, M_0) is the set

 $L_U(N, M_0) = \{h_U(\sigma) : \sigma \text{ is a firing sequence enabled at } M_0\}.$

Consider the following deadlock-free Petri net with weights (N, M_0) :

Give a new Petri net (N', M'_0) such that

- N' has no weights,
- (N', M'_0) is deadlock-free, and
- $L_{\{t_1,t_2,t_3\}}(N',M'_0) = L_{\{t_1,t_2,t_3\}}(N,M_0).$

Question 5 (3+3+3=9 points)

- (a) Give a Petri net (N, M_0) and connect it with arcs to the Petri net (N', M'_0) shown below so that the resulting Petri net (N'', M''_0) satisfies the following properties:
 - (N'', M_0'') is bounded, and
 - (N'', M''_0) has a reachable marking with at least 2^{100} tokens.

- (b) Exhibit a connected Petri net N = (S, T, F) such that I = (1, -1, 0) is an S-invariant and J = (1, 0, 1) is a T-invariant of N. Justify your answer.
- (c) Exhibit a deadlock-free Petri net (N, M_0) and a marking $M \geq M_0$ such that (N, M) is not deadlock-free.

Question 6 (4+4=8 points)

- (a) Let (N, M_0) be a live T-system. Prove that (N, M_0) is cyclic.
- (b) Let N be a T-net and let M_0, M be markings. Prove that if (N, M_0) is live and $2M_0 \stackrel{*}{\to} 2M$, then $M_0 \stackrel{*}{\to} M$.

Solution 1

(a) By applying the algorithm, we obtain:

$$\begin{split} & \operatorname{pre}_{t_1}(2,1,0) = (1,1,1), \\ & \operatorname{pre}_{t_1}(0,0,1) = (0,0,1), \\ & \operatorname{pre}_{t_2}(2,1,0) = (3,2,0), \\ & \operatorname{pre}_{t_2}(0,0,1) = (1,1,0), \\ & \operatorname{pre}_{t_3}(2,1,0) = (2,0,1), \\ & \operatorname{pre}_{t_3}(0,0,1) = (0,0,2). \end{split}$$

The only marking which is not covered by X is (1,1,0). Since (1,1,0) < (2,1,0), we obtain the new basis $Y = \{(1,1,0), (0,0,1)\}.$

(b) We cannot conclude anything, another iteration is required. Indeed, we cannot conclude that M is coverable since M_0 is not larger or equal to any marking of Y. Moreover, we cannot conclude that M is uncoverable since $Y \neq X$ which means that at least one other iteration must be performed.

Solution 2

(a) $\{s_1, s_4\}, \{s_2, s_3\}$ and $\{s_2, s_4\}.$

Explanation. An inspection of the presets/postsets shows that none of the place is a trap on its own, and that the traps of size two are: $\{s_1, s_4\}$, $\{s_2, s_3\}$ and $\{s_2, s_4\}$. We claim that these traps are minimal. Indeed, any subset of size three or four must contain one of $\{s_1, s_4\}$, $\{s_2, s_3\}$ and $\{s_2, s_4\}$.

(b) Yes. A vector I is an S-invariant of N if and only if it is a solution of the following system:

$$I(s_1) + I(s_2) = I(s_3) + I(s_4),$$

 $I(s_1) + I(s_4) = I(s_1) + I(s_3),$
 $I(s_2) + I(s_3) = I(s_2) + I(s_4).$

This system is equivalent to

$$I(s_2) = 2 \cdot I(s_3) + I(s_1),$$

 $I(s_4) = I(s_3).$

Therefore, the vector space of S-invariants is described by $\{x \cdot (0,2,1,1) + y \cdot (1,-1,0,0) : x,y \in \mathbb{R}\}$. By taking x = y = 1, we obtain the positive S-invariant I = (1,1,1,1).

Alternative solution. The vector (1,1,1,1) is immediately seen as a positive S-invariant since transitions do not change the amount of tokens.

(c) The marking equation for M_0 and M is:

$$15 - x_1 = 5,$$

$$3 + x_1 + x_2 - x_3 = 13,$$

$$17 - x_1 = 7,$$

$$4 + x_1 - x_2 + x_3 = 15.$$

The first equation implies that $x_1 = 10$. By the second equation, we obtain $x_2 = x_3$. By the fourth equation, we obtain 0 = 1 which is a contradiction. Therefore, M is not reachable from M_0 .

Alternative solution. We have $(1,1,1,1) \cdot M_0 = 39 \neq 40 = (1,1,1,1) \cdot M$. Since (1,1,1,1) is an S-invariant, M is not reachable from M_0 .

(d) The trap $\{s_2, s_3\}$ is initially marked at M_0 , but not marked at M. Therefore, M is not reachable from M_0 .

Solution 3

Note that the places colored in blue are crucial to make the Petri net 1-safe. Without these places, the net would only be 3-safe.

Solution 4

Solution 5

(a)

We have $\{p,q,100\cdot r\} \xrightarrow{*} \{2^{100}\cdot p,q,r\}.$

(b) By the given dimensions, the Petri net N=(S,T,F) must have three places and three transitions. Therefore, without loss of generality, $S=\{s_1,s_2,s_3\}$ and $T=\{t_1,t_2,t_3\}$. Let the incidence matrix of N be

Since I = (1, -1, 0) is an S-invariant, we have

$$a - d = 0,$$

$$b - e = 0,$$

$$c - f = 0.$$

Moreover, since J = (1, 0, 1) is a T-invariant, we have

$$a+c=0$$
,

$$d + f = 0,$$

$$g + i = 0.$$

Therefore, we must have a=d=-c=-f, b=e and g=-i. The assignment a=b=d=e=g=1, c=f=i=-1 and h=0 satisfies the above constraints. Therefore, it suffices to construct a connected Petri net whose incidence matrix is

$$\begin{array}{c|ccccc} & t_1 & t_2 & t_3 \\ \hline s_1 & 1 & 1 & -1 \\ s_2 & 1 & -1 & -1 \\ s_3 & 1 & 0 & -1 \\ \end{array}$$

The following Petri net is such a Petri net:

(c) The following Petri net is deadlock-free from (1,0) since s_1 is always enabled. However, it is not deadlock-free from (1,1), since $(1,1) \xrightarrow{t_2} (0,0)$ and (0,0) is dead.

Solution 6

- (a) Let M be a marking such that $M_0 \stackrel{*}{\to} M$. Since (N, M_0) is live, the reachability theorem for T-systems implies that $M_0 \sim M$. Note that \sim is symmetric, and in particular that $M \sim M_0$. Moreover, (N, M) is live. Therefore, by the reachability theorem, we have $M \stackrel{*}{\to} M_0$.
- (b) Since (N, M_0) is live, every circuit of N is marked by M_0 . Thus, since $2M_0 \ge M_0$, every circuit of N is also marked by $2M_0$. This implies that $(N, 2M_0)$ is live. By the reachability theorem for T-systems, we have $2M_0 \sim 2M$. Note that

$$2M_0 \sim 2M \iff I \cdot 2M_0 = I \cdot 2M$$
 for every S-invariant $I \iff I \cdot M_0 = I \cdot M$ for every S-invariant $I \iff M_0 \sim M$.

Therefore, $M_0 \sim M$ and by the reachability theorem we have $M_0 \stackrel{*}{\to} M$.