Petri nets - Endterm

- You have 90 minutes to complete the exam.
- Answers must be written in a separate booklet. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable pen. Do not use red or green.
- You are not allowed to use auxiliary means other than pen and paper.
- You can obtain 40 points. You need 17 points to pass.
- Note that we sometimes represent a marking M by the tuple $\left(M\left(s_{1}\right), M\left(s_{2}\right), \ldots, M\left(s_{n}\right)\right)$.

Question $1 \quad(4+2=6$ points)

Consider the following Petri net with weights $N=(S, T, W)$:

Let $M_{0}=(0,1,0)$ and $M=(1,0,1)$. We wish to determine whether M is coverable from M_{0}. After one iteration of the backward reachability algorithm, we obtain the minimal basis $X=\{(2,1,0),(0,0,1)\}$.
(a) Give the minimal basis Y obtained by executing the next iteration of the backward reachability algorithm from X.
(b) What can you conclude from Y obtained in (a)?

1. M is coverable from M_{0}.
2. M is not coverable from M_{0}.
3. None of the above, another iteration must be executed.

Justify your answer.

Question $2 \quad(2+2+2+2=8$ points $)$
Consider the following Petri net $N=(S, T, F)$:

(a) Give all of the minimal proper traps of N. Explain briefly why no other proper trap is minimal.
(b) Does N have a positive S-invariant? If so, exhibit one, if not, explain why.
(c) Prove that $M=(5,13,7,15)$ is not reachable from $M_{0}=(15,3,17,4)$.
(d) Prove that $M=(0,20,0,0)$ is not reachable from $M_{0}=(10,0,10,0)$.

Question 3 (5 points)

Recall that 3-SAT is the problem of determining the satisfiabillity of a Boolean formula in conjunctive normal form where clauses have at most three literals.

Give a polynomial time reduction from 3-SAT to the following reachability problem for 1-safe Petri nets:
Given: $\quad 1$-safe Petri net $\left(N, M_{0}\right)$ and a place s of N.
Determine: does there exist a marking M such that $M_{0} \xrightarrow{*} M$ and $M(s)=1$?
It suffices to explain your reduction informally and to illustrate it for the following formula:

$$
\varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right)
$$

Question 4 (4 points)

The projection of a firing sequence $\sigma \in T^{*}$ onto $U \subseteq T$ is the sequence $h_{U}(\sigma)$ obtained by deleting all transitions of σ which do not belong to U. For example, $h_{\{u, v\}}(u v t v t)=u v v, h_{\{t\}}(u v t v t)=t t$ and $h_{\{u, v\}}(t t t)=\varepsilon$. The U-traces of a Petri net $\left(N, M_{0}\right)$ is the set

$$
L_{U}\left(N, M_{0}\right)=\left\{h_{U}(\sigma): \sigma \text { is a firing sequence enabled at } M_{0}\right\}
$$

Give a new Petri net $\left(N^{\prime}, M_{0}^{\prime}\right)$ such that

- N^{\prime} has no weights,
- $\left(N^{\prime}, M_{0}^{\prime}\right)$ is deadlock-free, and
- $L_{\left\{t_{1}, t_{2}, t_{3}\right\}}\left(N^{\prime}, M_{0}^{\prime}\right)=L_{\left\{t_{1}, t_{2}, t_{3}\right\}}\left(N, M_{0}\right)$.

Question $5 \quad(3+3+3=9$ points $)$

(a) Give a Petri net $\left(N, M_{0}\right)$ and connect it with arcs to the Petri net ($N^{\prime}, M_{0}^{\prime}$) shown below so that the resulting Petri net $\left(N^{\prime \prime}, M_{0}^{\prime \prime}\right)$ satisfies the following properties:

- $\left(N^{\prime \prime}, M_{0}^{\prime \prime}\right)$ is bounded, and
- $\left(N^{\prime \prime}, M_{0}^{\prime \prime}\right)$ has a reachable marking with at least 2^{100} tokens.

$$
\left(N, M_{0}\right)
$$

$\left(N^{\prime}, M_{0}^{\prime}\right)$

(b) Exhibit a connected Petri net $N=(S, T, F)$ such that $I=(1,-1,0)$ is an S-invariant and $J=(1,0,1)$ is a T-invariant of N. Justify your answer.
(c) Exhibit a deadlock-free Petri net $\left(N, M_{0}\right)$ and a marking $M \geq M_{0}$ such that (N, M) is not deadlock-free.

Question $6 \quad(4+4=8$ points)

(a) Let $\left(N, M_{0}\right)$ be a live T-system. Prove that $\left(N, M_{0}\right)$ is cyclic.
(b) Let N be a T-net and let M_{0}, M be markings. Prove that if $\left(N, M_{0}\right)$ is live and $2 M_{0} \xrightarrow{*} 2 M$, then $M_{0} \xrightarrow{*} M$.

Solution 1

(a) By applying the algorithm, we obtain:

$$
\begin{aligned}
\operatorname{pre}_{t_{1}}(2,1,0) & =(1,1,1), \\
\operatorname{pre}_{t_{1}}(0,0,1) & =(0,0,1), \\
\operatorname{pre}_{t_{2}}(2,1,0) & =(3,2,0), \\
\operatorname{pre}_{t_{2}}(0,0,1) & =(1,1,0), \\
\operatorname{pre}_{t_{3}}(2,1,0) & =(2,0,1), \\
\operatorname{pre}_{t_{3}}(0,0,1) & =(0,0,2) .
\end{aligned}
$$

The only marking which is not covered by X is $(1,1,0)$. Since $(1,1,0)<(2,1,0)$, we obtain the new basis $Y=\{(1,1,0),(0,0,1)\}$.
(b) We cannot conclude anything, another iteration is required. Indeed, we cannot conclude that M is coverable since M_{0} is not larger or equal to any marking of Y. Moreover, we cannot conclude that M is uncoverable since $Y \neq X$ which means that at least one other iteration must be performed.

Solution 2

(a) $\left\{s_{1}, s_{4}\right\},\left\{s_{2}, s_{3}\right\}$ and $\left\{s_{2}, s_{4}\right\}$.

Explanation. An inspection of the presets/postsets shows that none of the place is a trap on its own, and that the traps of size two are: $\left\{s_{1}, s_{4}\right\},\left\{s_{2}, s_{3}\right\}$ and $\left\{s_{2}, s_{4}\right\}$. We claim that these traps are minimal. Indeed, any subset of size three or four must contain one of $\left\{s_{1}, s_{4}\right\},\left\{s_{2}, s_{3}\right\}$ and $\left\{s_{2}, s_{4}\right\}$.
(b) Yes. A vector I is an S-invariant of N if and only if it is a solution of the following system:

$$
\begin{aligned}
& I\left(s_{1}\right)+I\left(s_{2}\right)=I\left(s_{3}\right)+I\left(s_{4}\right), \\
& I\left(s_{1}\right)+I\left(s_{4}\right)=I\left(s_{1}\right)+I\left(s_{3}\right), \\
& I\left(s_{2}\right)+I\left(s_{3}\right)=I\left(s_{2}\right)+I\left(s_{4}\right) .
\end{aligned}
$$

This system is equivalent to

$$
\begin{aligned}
& I\left(s_{2}\right)=2 \cdot I\left(s_{3}\right)+I\left(s_{1}\right) \\
& I\left(s_{4}\right)=I\left(s_{3}\right)
\end{aligned}
$$

Therefore, the vector space of S-invariants is described by $\{x \cdot(0,2,1,1)+y \cdot(1,-1,0,0): x, y \in \mathbb{R}\}$. By taking $x=y=1$, we obtain the positive S-invariant $I=(1,1,1,1)$.

Alternative solution. The vector $(1,1,1,1)$ is immediately seen as a positive S-invariant since transitions do not change the amount of tokens.
(c) The marking equation for M_{0} and M is:

$$
\begin{aligned}
15-x_{1} & =5 \\
3+x_{1}+x_{2}-x_{3} & =13 \\
17-x_{1} & =7 \\
4+x_{1}-x_{2}+x_{3} & =15
\end{aligned}
$$

The first equation implies that $x_{1}=10$. By the second equation, we obtain $x_{2}=x_{3}$. By the fourth equation, we obtain $0=1$ which is a contradiction. Therefore, M is not reachable from M_{0}.

Alternative solution. We have $(1,1,1,1) \cdot M_{0}=39 \neq 40=(1,1,1,1) \cdot M$. Since $(1,1,1,1)$ is an S-invariant, M is not reachable from M_{0}.
(d) The trap $\left\{s_{2}, s_{3}\right\}$ is initially marked at M_{0}, but not marked at M. Therefore, M is not reachable from M_{0}.

Solution 3

Note that the places colored in blue are crucial to make the Petri net 1-safe. Without these places, the net would only be 3 -safe.

Solution 4

Solution 5

(a)

We have $\{p, q, 100 \cdot r\} \xrightarrow{*}\left\{2^{100} \cdot p, q, r\right\}$.
(b) By the given dimensions, the Petri net $N=(S, T, F)$ must have three places and three transitions. Therefore, without loss of generality, $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$. Let the incidence matrix of N be

	t_{1}	t_{2}	t_{3}
s_{1}	a	b	c
s_{2}	d	e	f
s_{3}	g	h	i

Since $I=(1,-1,0)$ is an S-invariant, we have

$$
\begin{aligned}
a-d & =0, \\
b-e & =0, \\
c-f & =0 .
\end{aligned}
$$

Moreover, since $J=(1,0,1)$ is a T-invariant, we have

$$
\begin{aligned}
a+c & =0, \\
d+f & =0, \\
g+i & =0 .
\end{aligned}
$$

Therefore, we must have $a=d=-c=-f, b=e$ and $g=-i$. The assignment $a=b=d=e=g=1$, $c=f=i=-1$ and $h=0$ satisfies the above constraints. Therefore, it suffices to construct a connected Petri net whose incidence matrix is

$$
\begin{array}{l|rrr}
& t_{1} & t_{2} & t_{3} \\
\hline s_{1} & 1 & 1 & -1 \\
s_{2} & 1 & -1 & -1 \\
s_{3} & 1 & 0 & -1
\end{array}
$$

The following Petri net is such a Petri net:

(c) The following Petri net is deadlock-free from $(1,0)$ since s_{1} is always enabled. However, it is not deadlockfree from $(1,1)$, since $(1,1) \xrightarrow{t_{2}}(0,0)$ and $(0,0)$ is dead.

Solution 6

(a) Let M be a marking such that $M_{0} \xrightarrow{*} M$. Since $\left(N, M_{0}\right)$ is live, the reachability theorem for T-systems implies that $M_{0} \sim M$. Note that \sim is symmetric, and in particular that $M \sim M_{0}$. Moreover, (N, M) is live. Therefore, by the reachability theorem, we have $M \xrightarrow{*} M_{0}$.
(b) Since $\left(N, M_{0}\right)$ is live, every circuit of N is marked by M_{0}. Thus, since $2 M_{0} \geq M_{0}$, every circuit of N is also marked by $2 M_{0}$. This implies that $\left(N, 2 M_{0}\right)$ is live. By the reachability theorem for T-systems, we have $2 M_{0} \sim 2 M$. Note that

$$
\begin{aligned}
2 M_{0} \sim 2 M & \Longleftrightarrow I \cdot 2 M_{0}=I \cdot 2 M \text { for every } S \text {-invariant } I \\
& \Longleftrightarrow I \cdot M_{0}=I \cdot M \text { for every } S \text {-invariant } I \\
& \Longleftrightarrow M_{0} \sim M .
\end{aligned}
$$

Therefore, $M_{0} \sim M$ and by the reachability theorem we have $M_{0} \xrightarrow{*} M$.

