Petri nets - Endterm

- You have 90 minutes to complete the exam.
- Answers must be written in a separate booklet. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable pen. Do not use red or green.
- You are not allowed to use auxiliary means other than pen and paper.
- You can obtain 40 points. You need 17 points to pass.
- Note that we sometimes represent a marking M by the tuple $\left(M\left(s_{1}\right), M\left(s_{2}\right), \ldots, M\left(s_{n}\right)\right)$.

Question $1 \quad(4+2=6$ points)

Consider the following Petri net with weights $N=(S, T, W)$:

Let $M_{0}=(0,1,0)$ and $M=(1,0,1)$. We wish to determine whether M is coverable from M_{0}. After one iteration of the backward reachability algorithm, we obtain the minimal basis $X=\{(2,1,0),(0,0,1)\}$.
(a) Give the minimal basis Y obtained by executing the next iteration of the backward reachability algorithm from X.
(b) What can you conclude from Y obtained in (a)?

1. M is coverable from M_{0}.
2. M is not coverable from M_{0}.
3. None of the above, another iteration must be executed.

Justify your answer.

Question $2 \quad(2+2+2+2=8$ points $)$
Consider the following Petri net $N=(S, T, F)$:

(a) Give all of the minimal proper traps of N. Explain briefly why no other proper trap is minimal.
(b) Does N have a positive S-invariant? If so, exhibit one, if not, explain why.
(c) Prove that $M=(5,13,7,15)$ is not reachable from $M_{0}=(15,3,17,4)$.
(d) Prove that $M=(0,20,0,0)$ is not reachable from $M_{0}=(10,0,10,0)$.

Question 3 (5 points)

Recall that 3-SAT is the problem of determining the satisfiabillity of a Boolean formula in conjunctive normal form where clauses have at most three literals.

Give a polynomial time reduction from 3-SAT to the following reachability problem for 1-safe Petri nets:
Given: $\quad 1$-safe Petri net $\left(N, M_{0}\right)$ and a place s of N.
Determine: does there exist a marking M such that $M_{0} \xrightarrow{*} M$ and $M(s)=1$?
It suffices to explain your reduction informally and to illustrate it for the following formula:

$$
\varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right)
$$

Question 4 (4 points)

The projection of a firing sequence $\sigma \in T^{*}$ onto $U \subseteq T$ is the sequence $h_{U}(\sigma)$ obtained by deleting all transitions of σ which do not belong to U. For example, $h_{\{u, v\}}(u v t v t)=u v v, h_{\{t\}}(u v t v t)=t t$ and $h_{\{u, v\}}(t t t)=\varepsilon$. The U-traces of a Petri net $\left(N, M_{0}\right)$ is the set

$$
L_{U}\left(N, M_{0}\right)=\left\{h_{U}(\sigma): \sigma \text { is a firing sequence enabled at } M_{0}\right\}
$$

Give a new Petri net $\left(N^{\prime}, M_{0}^{\prime}\right)$ such that

- N^{\prime} has no weights,
- $\left(N^{\prime}, M_{0}^{\prime}\right)$ is deadlock-free, and
- $L_{\left\{t_{1}, t_{2}, t_{3}\right\}}\left(N^{\prime}, M_{0}^{\prime}\right)=L_{\left\{t_{1}, t_{2}, t_{3}\right\}}\left(N, M_{0}\right)$.

Question $5 \quad(3+3+3=9$ points $)$

(a) Give a Petri net $\left(N, M_{0}\right)$ and connect it with arcs to the Petri net ($N^{\prime}, M_{0}^{\prime}$) shown below so that the resulting Petri net $\left(N^{\prime \prime}, M_{0}^{\prime \prime}\right)$ satisfies the following properties:

- $\left(N^{\prime \prime}, M_{0}^{\prime \prime}\right)$ is bounded, and
- $\left(N^{\prime \prime}, M_{0}^{\prime \prime}\right)$ has a reachable marking with at least 2^{100} tokens.

$$
\left(N, M_{0}\right)
$$

$\left(N^{\prime}, M_{0}^{\prime}\right)$

(b) Exhibit a connected Petri net $N=(S, T, F)$ such that $I=(1,-1,0)$ is an S-invariant and $J=(1,0,1)$ is a T-invariant of N. Justify your answer.
(c) Exhibit a deadlock-free Petri net $\left(N, M_{0}\right)$ and a marking $M \geq M_{0}$ such that (N, M) is not deadlock-free.

Question $6 \quad(4+4=8$ points)

(a) Let $\left(N, M_{0}\right)$ be a live T-system. Prove that $\left(N, M_{0}\right)$ is cyclic.
(b) Let N be a T-net and let M_{0}, M be markings. Prove that if $\left(N, M_{0}\right)$ is live and $2 M_{0} \xrightarrow{*} 2 M$, then $M_{0} \xrightarrow{*} M$.

