<u>Petri nets — Endterm</u>

- You have 90 minutes to complete the exam.
- Answers must be written in a **separate booklet**. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable **pen**. Do not use red or green.
- You are not allowed to use auxiliary means other than pen and paper.
- You can obtain 40 points. You need 17 points to pass.
- Note that we sometimes represent a marking M by the tuple $(M(s_1), M(s_2), \ldots, M(s_n))$.

Question 1 (4+2=6 points)

Consider the following Petri net with weights N = (S, T, W):

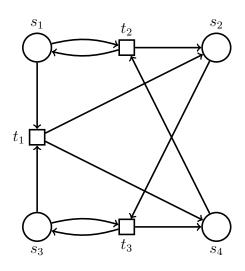


Let $M_0 = (0, 1, 0)$ and M = (1, 0, 1). We wish to determine whether M is coverable from M_0 . After one iteration of the backward reachability algorithm, we obtain the minimal basis $X = \{(2, 1, 0), (0, 0, 1)\}$.

- (a) Give the minimal basis Y obtained by executing the next iteration of the backward reachability algorithm from X.
- (b) What can you conclude from Y obtained in (a)?
 - 1. M is coverable from M_0 .
 - 2. M is not coverable from M_0 .
 - 3. None of the above, another iteration must be executed.

Justify your answer.

Question 2 (2+2+2+2=8 points)Consider the following Petri net N = (S, T, F):



- (a) Give all of the minimal proper traps of N. Explain briefly why no other proper trap is minimal.
- (b) Does N have a positive S-invariant? If so, exhibit one, if not, explain why.
- (c) Prove that M = (5, 13, 7, 15) is not reachable from $M_0 = (15, 3, 17, 4)$.
- (d) Prove that M = (0, 20, 0, 0) is not reachable from $M_0 = (10, 0, 10, 0)$.

Question 3 (5 points)

Recall that 3-SAT is the problem of determining the satisfiability of a Boolean formula in conjunctive normal form where clauses have at most three literals.

Give a polynomial time reduction from 3-SAT to the following reachability problem for 1-safe Petri nets:

Given: 1-safe Petri net (N, M_0) and a place s of N. Determine: does there exist a marking M such that $M_0 \xrightarrow{*} M$ and M(s) = 1?

It suffices to explain your reduction informally and to illustrate it for the following formula:

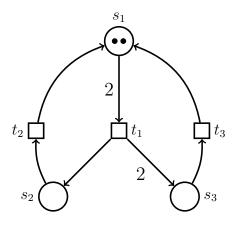
$$\varphi(x_1, x_2, x_3, x_4) = (x_1 \lor \neg x_2 \lor x_4) \land (\neg x_1 \lor x_3 \lor x_4).$$

Question 4 (4 points)

The projection of a firing sequence $\sigma \in T^*$ onto $U \subseteq T$ is the sequence $h_U(\sigma)$ obtained by deleting all transitions of σ which do not belong to U. For example, $h_{\{u,v\}}(uvtvt) = uvv$, $h_{\{t\}}(uvtvt) = tt$ and $h_{\{u,v\}}(ttt) = \varepsilon$. The *U*-traces of a Petri net (N, M_0) is the set

 $L_U(N, M_0) = \{h_U(\sigma) : \sigma \text{ is a firing sequence enabled at } M_0\}.$

Consider the following deadlock-free Petri net with weights (N, M_0) :

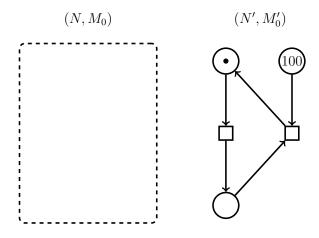


Give a new Petri net (N', M'_0) such that

- N' has no weights,
- (N', M'_0) is deadlock-free, and
- $L_{\{t_1,t_2,t_3\}}(N',M'_0) = L_{\{t_1,t_2,t_3\}}(N,M_0).$

Question 5 (3+3+3=9 points)

- (a) Give a Petri net (N, M_0) and connect it with arcs to the Petri net (N', M'_0) shown below so that the resulting Petri net (N'', M''_0) satisfies the following properties:
 - (N'', M_0'') is bounded, and
 - (N'', M''_0) has a reachable marking with at least 2^{100} tokens.



- (b) Exhibit a connected Petri net N = (S, T, F) such that I = (1, -1, 0) is an S-invariant and J = (1, 0, 1) is a T-invariant of N. Justify your answer.
- (c) Exhibit a deadlock-free Petri net (N, M_0) and a marking $M \ge M_0$ such that (N, M) is not deadlock-free.

Question 6 (4+4=8 points)

- (a) Let (N, M_0) be a live T-system. Prove that (N, M_0) is cyclic.
- (b) Let N be a T-net and let M_0, M be markings. Prove that if (N, M_0) is live and $2M_0 \xrightarrow{*} 2M$, then $M_0 \xrightarrow{*} M$.