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Exercise 6.1

(a) Give an S-system (N, My) that is 1-bounded and such that |My| > 1.
(b) Give a strongly connected T-system (N, My) which is not live and such that My # 0.

)
)

(¢) Give a bounded T-system (N, My) which is not strongly connected and such that My # 0.

(d) Let (N, Mp) be a T-system. Show that if (M, Mp) is strongly connected and live, then it is bounded.
)

(e) % Reprove (d), but this time without assuming that (N, My) is live.

Exercise 6.2

(a) Let N = (P, T, F) be a Petri net, and let s,t € T be such that *s N ¢* = (. Show that if M L5 M’, then
M 5.

(b) Let N' = (P, T, F) be a Petri net which is not strongly connected. Show that P UT can be partitioned
into two disjoint sets U,V C PUT such that N (V x U) = 0.

(c) Let U and V be a partition as in (b). Show that if M % M’, then there exist oy € (T N U)* and
oy € (Tﬂ V)* such that o = ooy and M oyov M.

(d) Let (N, Mp) be live and bounded. Use (a), (b) and (c) to show that N is strongly connected.

Exercise 6.3

(a) Show that the problem of determining whether a T-system is not live belongs to NP.
(b) Give a polynomial time algorithm for deciding liveness of T-systems.

(c) Test whether the following T-system is live by using your previous algorithm:




Exercise 6.4
Consider the following free-choice system (N, My):
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(a) Give all minimal proper siphons of (N, My).
(b) Use (a) to say whether (N, M) is live or not.



Solution 6.1

(a)

(d)

()

] >® ]

Let NV = (P,T,F). Let b = My(P). We show that every place is b-bounded. Let p € P. Since N is
strongly connected, p lies on some circuit y. Note that My(y) < b and that (N, Mp) is live. Therefore, by
Theorem 5.2.4, p is b-bounded. O

Let N = (P,T,F). For the sake of contradiction, assume (N, M) is unbounded. Since (N, M) is
unbounded, there exist M, M’ € N¥, o € T+ and p € P such that

My 5 M % M, M’ > M and M'(p) > M(p). (1)

Let *p = {s} and p* = {t}. Since N is strongly connected, there exists a path 7 from ¢ to s. Therefore, p
lies on the circuit v = (p, t)7(s,p).

Let n = My(y). By (1), we may fire o arbitrarily many times from M, thus increasing the amount of
tokens in p by at least one each time. Therefore, there exists M” € N” such that

n+1
M Z— M" and M" (p) > n.

By the fundamental property of T-systems, M"(y) = M(y) = n, which is a contradiction since M"(y) >
M"(p) > n. O

Solution 6.2

(a)

Let X € NP be such that M 5 X < M’. For the sake of contradiction, suppose s is not enabled in M.
There exists p € P such that p € *s and M (p) = 0. Since s is enabled in X, we have X (p) > 0. Therefore,
it must be the case that p € t*. This implies that p € *sN¢* which is a contradiction. Thus, s is enabled
in M and M 3 Y for some marking Y € N¥.



Let us now show that ¢ is enabled in Y. Let g € *t. We must show that Y'(g) > 0.
Case 1: ¢ £ °®s. If ¢ & ®s, then Y(q) > M(q) > 0.
Case 2: g € *s. If ¢ € *s, then

Y(q) = M(q) — 1. (2)
Since s is enabled in X, we have X(q) > 0. Moreover, ¢ & t* since *sNt* = (). This implies that
M(q) > X(q), and hence M (q) > 2. By (2), we derive Y(g) > 1. O

Since N is not strongly connected, there exist u,v € P UT such that there is no path from v to u. Let

U = {z € PUT : there is a path from z to u},
V=(PUT)\U.

Note that both sets are non empty since v € U and v € V. Moreover, UNV =@ and UUV = PUT by
definition.

Let us show that ' N (V x U) = 0. Assume there exists e € N (V x U). There exist z € U and y € V
such that (y,x) € F. Since x € U, there exists a path o from z to u. Therefore, (y,z)o is a path from y
to u. This implies that y € U which is a contradiction. O

Let U/ =TNU and V' =T NV. Let us first show that *(U’) N (V')* = 0. For the sake of contradiction,
assume there exist s € V', t € U’ and ¢ € P such that ¢ € s* and ¢ € *t. We have (s,q) € F and
(g,t) € F. If ¢ € U, then by (b) and (s,q) € F, we obtain a contradiction. Similarly, if ¢ € V, then
(g,t) € F yields a contradiction.

We now prove the claim by induction of |o|. If || = 0, it follows trivially. Assume that |o| > 0 and that
the claim holds for firing sequences of length |o| — 1. There exist o/ € T*, s € T and Y € N such that
o=oc's and /

M-I X 5 M.
By induction hypothesis, there exists my € (U')* and 7y € (V')* such that M =% X. If s € V'
or |my| = 0, then we are done. Otherwise, let 7{, € (V')* and t € V' be such that my = 7{,¢. Since
*(U")N(V")* =0, we can apply (a) and obtain

7\'U7T{/S

My 5oy
for some Y € N¥. By induction hypothesis, there exist v € (U’')* and vy € (V')* such that

MYy,

Let oy =y and oy = yyt. We are done since oy € (U')*, oy € (V')* and M Z22% M. O

Let NV = (P,T,F). For the sake of contradiction, assume N is not strongly connected. By (b), there
exists a partition U,V of PUT such that F N (V x U) = . Since N is connected, there exist u € U and
v € V such that (u,v) € F. Let b € N be such that (N, Mp) is b-bounded. Since (N, My) is live, there
exist o € T* and M € N such that My % M and (u,v) is taken b+ 1 times. By (c), there exist oy € U*
and oy € V* such that My 222 M. Let X € N¥ be such that My 2% X 2% M.

Case 1: ue P,v e T. Since F N (V x U) = {), there is no transition of V' that puts tokens into places of

U. Note that v decreases the amount of token of u by 1. Since X =% M, these two observations imply
that X (u) > b+ 1. As X is reachable from My, this contradicts (N, My) being b-bounded.

Case 2: u €T, v € P.Since FN(V xU) = (), there is no transition of U that consumes tokens from places

of V. Note that u increases the amount of token of u by 1. Since My 2% X, these two observations imply
that X (u) > b+ 1. This contradicts (N, M) being b-bounded. O



Solution 6.3

(a) By Theorem 5.2.3, (N, My) is not live if and only if My(y) = 0 for some circuit . Note that every cycle
~ contains a simple cycle . Moreover, if My(y) = 0, then My(y') = 0. This implies that,

(N, My) is not live <= My() = 0 for some simple circuit ~.

Therefore, to test whether (A, My) is not live, it suffices to test a circuit 7 of size at most |P U T| and
check whether My() = 0. O

(b) Since a graph may contain exponentially many simple cycles, we cannot directly use the approach of (a).
Instead, we construct the subnet A/ obtained from A by removing all places containing tokens. We then
perform depth-first search to test whether A/" contains a cycle. This procedure can be implemented as
follows:

Input: T-system (N, My) where N = (P, T, F)

Output: (N, M) live?

while 3p € P such that —wvisited(p) and My(p) = 0 do
if has-cycle(p) then return false

return {rue

has-cycle(p) :
visited(p) < true
onstack(p) <« true

for g € (p*)® such that My(¢) =0 do

if onstack(q) then
return true

else if —wvisited(q) then
if has-cycle(q) then return true

onstack(p) < false
return false

(c) We obtain the following subnet:

y41 D2 P3

|i,< O< [k O
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A depth-first search shows that this subnet contains no cycle. Therefore, the system is live.

Solution 6.4
(a) We claim that the system has two minimal proper siphons: {po} and {p2, ps}.

Let us show the claim. By inspecting *p and p® for every place p, we find a single siphon of size one: {pg}.
Moreover, we have *{p2,p3} = {t2,t3,ta} = {p2,p3}*. Now, note that ¢ty € *p; and *ty = {po}. Therefore,
any siphon containing p; must also contain pg. Similarly, any siphon containing p4 must also contain pyg.
Thus, no minimal siphon contains p; or p4, and we are done. O



(b) The system is not live. By Commoner’s Theorem, the system is live if and only if every minimal proper
siphon contains a trap marked at My. The minimal siphon {ps,p3} is also a trap and it is marked at My.
However, the minimal siphon {pg} is not a trap and hence it does not contain a marked trap.



