Petri nets — Homework 6

Due 27.06.2018

Exercise 6.1

(a) Give an S-system (\mathcal{N}, M_0) that is 1-bounded and such that $|M_0| > 1$.

(b) Give a strongly connected T-system (\mathcal{N}, M_0) which is not live and such that $M_0 \neq 0$.

(c) Give a bounded T-system (\mathcal{N}, M_0) which is not strongly connected and such that $M_0 \neq 0$.

(d) Let (\mathcal{N}, M_0) be a T-system. Show that if (\mathcal{N}, M_0) is strongly connected and live, then it is bounded.

(e) ★ Reprove (d), but this time without assuming that (\mathcal{N}, M_0) is live.

Exercise 6.2

(a) Let $\mathcal{N} = (P, T, F)$ be a Petri net, and let $s, t \in T$ be such that $s \cap t^* = \emptyset$. Show that if $M \xrightarrow{t} M'$, then $M \xrightarrow{s} M'$.

(b) Let $\mathcal{N} = (P, T, F)$ be a Petri net which is not strongly connected. Show that $P \cup T$ can be partitioned into two disjoint sets $U, V \subseteq P \cup T$ such that $F \cap (V \times U) = \emptyset$.

(c) Let U and V be a partition as in (b). Show that if $M \xrightarrow{(T \cap V)^*} M'$, then there exist $\sigma_U \in (T \cap U)^*$ and $\sigma_V \in (T \cap V)^*$ such that $\sigma = \sigma_U \sigma_V$ and $M \xrightarrow{\sigma_U \sigma_V} M'$.

(d) Let (\mathcal{N}, M_0) be live and bounded. Use (a), (b) and (c) to show that \mathcal{N} is strongly connected.

Exercise 6.3

(a) Show that the problem of determining whether a T-system is not live belongs to NP.

(b) Give a polynomial time algorithm for deciding liveness of T-systems.

(c) Test whether the following T-system is live by using your previous algorithm:
Exercise 6.4
Consider the following free-choice system \((\mathcal{N}, M_0)\):

(a) Give all minimal proper siphons of \((\mathcal{N}, M_0)\).

(b) Use (a) to say whether \((\mathcal{N}, M_0)\) is live or not.
Solution 6.1

(a)

(b)

(c)

(d) Let $\mathcal{N} = (P,T,F)$. Let $b = M_0(P)$. We show that every place is b-bounded. Let $p \in P$. Since \mathcal{N} is strongly connected, p lies on some circuit γ. Note that $M_0(\gamma) \leq b$ and that (\mathcal{N},M_0) is live. Therefore, by Theorem 5.2.4, p is b-bounded.

(e) Let $\mathcal{N} = (P,T,F)$. For the sake of contradiction, assume (\mathcal{N},M_0) is unbounded. Since (\mathcal{N},M_0) is unbounded, there exist $M,M' \in \mathcal{N}P$, $\sigma \in T^+$ and $p \in P$ such that

$$M_0 \xrightarrow{\sigma} M', \ M' \geq M \text{ and } M'(p) > M(p). \quad (1)$$

Let $p = \{s\}$ and $p^* = \{t\}$. Since \mathcal{N} is strongly connected, there exists a path π from t to s. Therefore, p lies on the circuit $\gamma = (p,t)\pi(s,p)$.

Let $n = M_0(\gamma)$. By (1), we may fire σ arbitrarily many times from M, thus increasing the amount of tokens in p by at least one each time. Therefore, there exists $M'' \in \mathcal{N}P$ such that

$$M \xrightarrow{\sigma^{n+1}} M'' \text{ and } M''(p) > n.$$

By the fundamental property of T-systems, $M''(\gamma) = M(\gamma) = n$, which is a contradiction since $M''(\gamma) \geq M''(p) > n$.

Solution 6.2

(a) Let $X \in \mathbb{N}P$ be such that $M \xrightarrow{\sigma} X \xrightarrow{\sigma} M'$. For the sake of contradiction, suppose s is not enabled in M. There exists $p \in P$ such that $p \in \bullet s$ and $M(p) = 0$. Since s is enabled in X, we have $X(p) > 0$. Therefore, it must be the case that $p \in \bullet t$. This implies that $p \in \bullet s \cap \bullet t$ which is a contradiction. Thus, s is enabled in M and $M \xrightarrow{\sigma} Y$ for some marking $Y \in \mathbb{N}P$.

Let us now show that \(t \) is enabled in \(Y \). Let \(q \in \textbf{M}t \). We must show that \(Y(q) > 0 \).

Case 1: \(q \notin \textbf{M}s \). If \(q \notin \textbf{M}s \), then \(Y(q) \geq M(q) > 0 \).

Case 2: \(q \in \textbf{M}s \). If \(q \in \textbf{M}s \), then

\[
Y(q) = M(q) - 1.
\]

(2)

Since \(s \) is enabled in \(X \), we have \(X(q) > 0 \). Moreover, \(q \notin t^* \) since \(\textbf{M}s \cap t^* = \emptyset \). This implies that \(M(q) > X(q) \), and hence \(M(q) \geq 2 \). By (2), we derive \(Y(q) \geq 1 \).

(b) Since \(N \) is not strongly connected, there exist \(u, v \in P \cup T \) such that there is no path from \(v \) to \(u \). Let

\[
U = \{x \in P \cup T : \text{there is a path from } x \text{ to } u\},
\]

\[
V = (P \cup T) \setminus U.
\]

Note that both sets are non empty since \(u \in U \) and \(v \in V \). Moreover, \(U \cap V = \emptyset \) and \(U \cup V = P \cup T \) by definition.

Let us show that \(F \cap (V \times U) = \emptyset \). Assume there exists \(e \in F \cap (V \times U) \). There exist \(x \in U \) and \(y \in V \) such that \((y, x) \in F \). Since \(x \in U \), there exists a path \(\sigma \) from \(x \) to \(u \). Therefore, \((y, x)\sigma \) is a path from \(y \) to \(u \). This implies that \(y \in U \) which is a contradiction.

(c) Let \(U' = T \cap U \) and \(V' = T \cap V \). Let us first show that \(\textbf{M}(U') \cap \textbf{M}(V') = \emptyset \). For the sake of contradiction, assume there exist \(s \in V' \), \(t \in U' \) and \(q \in P \) such that \(q \in s^* \) and \(q \in t^* \). We have \(s, q \in F \) and \((q, t) \in F \). If \(q \in U \), then by (b) and \((s, q) \in F \), we obtain a contradiction. Similarly, if \(q \in V \), then \((q, t) \in F \) yields a contradiction.

We now prove the claim by induction of \(|\sigma|\). If \(|\sigma| = 0\), it follows trivially. Assume that \(|\sigma| > 0 \) and that the claim holds for firing sequences of length \(|\sigma| - 1 \). There exist \(\sigma' \in T^* \), \(s \in T \) and \(Y \in \mathbb{N}^P \) such that \(\sigma = \sigma's \) and

\[
M \xrightarrow{\sigma'} X \xrightarrow{s} M'.
\]

By induction hypothesis, there exists \(\pi_U \in (U')^* \) and \(\pi_V \in (V')^* \) such that \(M \xrightarrow{\pi_U \pi_V} X \). If \(s \in V' \) or \(|\pi_V| = 0 \), then we are done. Otherwise, let \(\pi'_V \in (V')^* \) and \(t \in V' \) be such that \(\pi_V = \pi'_V t \). Since \((U') \cap (V')^* = \emptyset \), we can apply (a) and obtain

\[
M \xrightarrow{\pi_U \pi'_V s} Y \xrightarrow{t} M'.
\]

for some \(Y \in \mathbb{N}^P \). By induction hypothesis, there exist \(\gamma_U \in (U')^* \) and \(\gamma_V \in (V')^* \) such that

\[
M \xrightarrow{\gamma_U \gamma_V} Y.
\]

Let \(\sigma_U = \gamma_U \) and \(\sigma_V = \gamma_V t \). We are done since \(\sigma_U \in (U')^* \), \(\sigma_V \in (V')^* \) and \(M \xrightarrow{\sigma_U \sigma_V} M' \).

(d) Let \(N = (P, T, F) \). For the sake of contradiction, assume \(N \) is not strongly connected. By (b), there exists a partition \(U, V \) of \(P \cup T \) such that \(F \cap (V \times U) = \emptyset \). Since \(N \) is connected, there exist \(u \in U \) and \(v \in V \) such that \(u, v \in F \). Let \(b \in \mathbb{N} \) be such that \((N, M_0) \) is \(b \)-bounded. Since \((N, M_0) \) is live, there exist \(\sigma \in T^* \) and \(M \in \mathbb{N}^P \) such that \(M \xrightarrow{\sigma} M \) and \(u, v \) is taken \(b + 1 \) times. By (c), there exist \(\sigma_U \in U^* \) and \(\sigma_V \in V^* \) such that \(M \xrightarrow{\sigma_U \sigma_V} M \). Let \(X \in \mathbb{N}^P \) be such that \(M_0 \xrightarrow{\sigma_U} X \xrightarrow{\sigma_V} M \).

Case 1: \(u \in P \), \(v \in T \). Since \(F \cap (V \times U) = \emptyset \), there is no transition of \(V \) that puts tokens into places of \(U \). Note that \(v \) decreases the amount of token of \(u \) by \(1 \). Since \(X \xrightarrow{\sigma_U} M \), these two observations imply that \(X(u) \geq b + 1 \). As \(X \) is reachable from \(M_0 \), this contradicts \((N, M_0) \) being \(b \)-bounded.

Case 2: \(u \in T \), \(v \in P \). Since \(F \cap (V \times U) = \emptyset \), there is no transition of \(U \) that consumes tokens from places of \(V \). Note that \(u \) increases the amount of token of \(u \) by \(1 \). Since \(M_0 \xrightarrow{\sigma_U} X \), these two observations imply that \(X(u) \geq b + 1 \). This contradicts \((N, M_0) \) being \(b \)-bounded.
Solution 6.3

(a) By Theorem 5.2.3, \((\mathcal{N}, M_0)\) is not live if and only if \(M_0(\gamma) = 0\) for some circuit \(\gamma\). Note that every cycle \(\gamma\) contains a simple cycle \(\gamma'\). Moreover, if \(M_0(\gamma) = 0\), then \(M_0(\gamma') = 0\). This implies that,

\[\mathcal{N}, M_0\) is not live \iff M_0(\gamma) = 0 \text{ for some simple circuit } \gamma.\]

Therefore, to test whether \((\mathcal{N}, M_0)\) is not live, it suffices to test a circuit \(\gamma\) of size at most \(|P \cup T|\) and check whether \(M_0(\gamma) = 0\).

(b) Since a graph may contain exponentially many simple cycles, we cannot directly use the approach of (a). Instead, we construct the subnet \(\mathcal{N}'\) obtained from \(\mathcal{N}\) by removing all places containing tokens. We then perform depth-first search to test whether \(\mathcal{N}'\) contains a cycle. This procedure can be implemented as follows:

```plaintext
Input: T-system \((\mathcal{N}, M_0)\) where \(\mathcal{N} = (P, T, F)\)
Output: \((\mathcal{N}, M_0)\) live?
while \(\exists p \in P\) such that \(\neg\text{visited}(p)\) and \(M_0(p) = 0\) do
    if has-cycle(p) then return false
return true
has-cycle(p):
    visited(p) ← true
    onstack(p) ← true
    for \(q \in (p)^*\) such that \(M_0(q) = 0\) do
        if onstack(q) then return true
        else if \(\neg\text{visited}(q)\) then
            if has-cycle(q) then return true
        onstack(p) ← false
    return false
```

(c) We obtain the following subnet:

![Diagram](image)

A depth-first search shows that this subnet contains no cycle. Therefore, the system is live.

Solution 6.4

(a) We claim that the system has two minimal proper siphons: \(\{p_0\}\) and \(\{p_2, p_3\}\).

Let us show the claim. By inspecting \(\bullet p\) and \(p^*\) for every place \(p\), we find a single siphon of size one: \(\{p_0\}\). Moreover, we have \(\bullet \{p_2, p_3\} = \{t_2, t_3, t_4\} = \{p_2, p_3\}^*\). Now, note that \(t_0 \in \bullet p_1\) and \(\bullet t_0 = \{p_0\}\). Therefore, any siphon containing \(p_1\) must also contain \(p_0\). Similarly, any siphon containing \(p_4\) must also contain \(p_0\). Thus, no minimal siphon contains \(p_1\) or \(p_4\), and we are done.
(b) The system is not live. By Commoner’s Theorem, the system is live if and only if every minimal proper siphon contains a trap marked at M_0. The minimal siphon $\{p_2, p_3\}$ is also a trap and it is marked at M_0. However, the minimal siphon $\{p_0\}$ is not a trap and hence it does not contain a marked trap.