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Exercise 5.1

Consider the following Petri net N = (P, T, F ):

p1 p2 p3t1 t2

t3 p7

p4 p5 p6t4 t5

(a) Give a basis of the vector space of T -invariants of N . [Hint: use a characterization of T -invariants.]

(b) Let M = {p1, p2, p4, p4} and M ′ = {p1, p3, p5}. We have shown that N is bounded from any initial
marking in #4.3(b). Can you tell whether (N ,M) and (N ,M ′) are live?

Exercise 5.2

Consider the following Petri net (with weights) N :

2

2

p1 p2

p3 p4

t1

t2

t3

t4

(a) Use siphons/traps to prove or disprove that N is live from M0 = {p2, 3 · p4},



(b) Can the marking equation be used to prove or disprove that {p2, p4}
∗−→ {p1, 3 ·p2, p3}? Is so, why? If not,

can traps or siphons help?

Exercise 5.3

Let N = (P, T,W ) be a net with weights and let M0,M be markings. We say that a trap Q is minimal if it is
non empty and every non empty Q′ ⊂ Q is not a trap.

(a) Disprove the following statement:

There exists a trap Q of N such that M0(Q) > 0 and M(Q) = 0 if and only if there exists a
minimal trap R of N such that M0(R) > 0 and M(R) = 0.

(b) Show that Petri nets can have exponentially many minimal traps. More formally, exhibit an infinite family
of (distinct) nets N1 = (P1, T1, F1),N2 = (P2, T2, F2), . . ., some c > 1, and a function f ∈ Ω(cn) such that
Ni has f(|Pi|) minimal traps for every i ≥ 1.

(c) For every x ∈ {false, true}P , let Qx = {p : p ∈ P, xp = true}.

(i) Give a Boolean formula ϕtrap over variables {xp : p ∈ P} such that ϕtrap(x) holds if and only if Qx

is a trap of N .

(ii) Give a quantified Boolean formula ϕmintrap over variables {xp : p ∈ P} such that ϕmintrap(x) holds if
and only if Qx is a minimal trap of N .

(iii) Give a Boolean formula ϕconstraints over variables {xp : p ∈ P} such that ϕconstraints(x) holds if and
only if M0(Qx) > 0 implies M(Qx) > 0.

(d) Construct ϕtrap(x) for the following Petri net:

2
45

2

2

2

p1 p2

p3 p4

t1

t2

t3

t4

t5

(e) F Use the SMT solver Z3 to prove that the Petri net above cannot reach a marking M such that M(p2) = 2
and M(p3) ≥ 1. See instructions on the webpage of the course. You may start from the given partial
solution if you need help.



Solution 5.1

(a) Recall that J is a T -invariant if and only if
∑

t∈•p I(t) =
∑

t∈p• I(t) for every p ∈ P . This gives rise to
the following system of equations:

J(t1) = J(t3),

J(t2) = J(t1) + J(t2),

0 = J(t2),

J(t1) + J(t3) + J(t4) = 0,

J(t1) + J(t5) = J(t4) + J(t5),

J(t2) = J(t5),

J(t2) + J(t5) = 0.

This system of equations is equivalent to J(t1) = J(t2) = J(t3) = J(t4) = J(t5) = 0. Therefore, the
vector space of T -invariants of N is trivial, i.e. it only contains the null vector.

F This can be verified using PIPE by loading the Petri net and clicking on “Invariant Analysis” in the
left menu.

(b) Yes. We can actually now show that N is not live from any initial marking M0. Assume, (N ,M0) is live.
Since (N ,M0) is also bounded by #4.3(b), then it is well-formed. We have seen that every well-formed net
has a positive T -invariant. This is a contradiction since the only T -invariant of N is the trivial invariant
which is not positive. Therefore, (N ,M0) is not live. In particular, this implies that both (N ,M) and
(N ,M ′) are not live.

Solution 5.2

(a) Let Q = {p1, p3}. We have

•Q = {t1, t2}
⊆ {t1, t2, t3}
= Q•.

Therefore Q is a siphon. Since Q is not marked by M0, we conclude that (N ,M0) is not live.

(b) The incidence matrix of N is:

N =


1 −1 0 0
0 −1 0 1
1 1 −1 0
0 0 1 −1

 .

The marking equation is: 
1
3
1
0

 =


0
1
0
1

+


1 −1 0 0
0 −1 0 1
1 1 −1 0
0 0 1 −1

 · x.
The unique solution of the marking equation is

x =


2
1
2
3


Since it is non negative, we cannot conclude whether the marking is reachable or not.

Let us consider the trap Q = {p4} which is marked by the initial marking. We can conclude that the
target marking is not reachable since it does not mark Q.



Solution 5.3

(a) Consider the following Petri net:

p1 p2

p3

t1

t2

t3

Let M0 = {p1}, M = ∅ and Q = {p1, p2, p3}. Note that Q is a trap such that M0(Q) > 0 and M(Q) = 0.
Moreover, observe that Q is not a minimal trap since it contains the trap {p2, p3}. We claim that no
minimal trap marks M0. For the sake of contradiction, suppose there exists a minimal trap R such that
M0(R) > 0. We have p1 ∈ R. Moreover, R 6= {p1} and R 6= Q since the former is not a trap and the latter
is not minimal. Thus, R = {p1, p2} or R = {p1, p3}, but both are not traps, which yields a contradiction.

(b) For every n ∈ N≥1, let Nn = (Pn, Tn, Fn) be the following net:

p1

q1

t1

p2

q2

t2

pn

qn

tn

Note that every set Q ⊆ Pn that contains at least one of pi or qi for every 1 ≤ i ≤ n is a trap. Thus, Nn

has at least 2n = (
√

2)|Pn| traps.

(c) (i) We have

Qx is a trap ⇐⇒ Q•x ⊆ •Qx

⇐⇒ ∀t ∈ T [(t ∈ Q•x) =⇒ (t ∈ •Qx)]

⇐⇒ ∀t ∈ T [(∃p ∈ •t : p ∈ Qx) =⇒ (∃p ∈ t• : p ∈ Qx)]

⇐⇒ ∀t ∈ T [(∃p ∈ •t : xp) =⇒ (∃p ∈ t• : xp)].



Therefore, we construct the following formula:

ϕtrap(x) =
∧
t∈T

[( ∨
p∈•t

xp

)
→

(∨
p∈t•

xp

)]
.

(ii) We have

Qx is a min. trap ⇐⇒ Qx is a non empty trap ∧ (∀ ∅ ⊂ Q′ ⊂ Q : Q′ is not a trap)

⇐⇒ ϕtrap(x) ∧Qx 6= ∅ ∧ [∀y : (Qy 6= ∅ ∧Qy ⊆ Qx ∧Qy 6= Qx) =⇒ ¬ϕtrap(y)]

⇐⇒ ϕtrap(x) ∧ (∃p ∈ P : xp) ∧ [∀y : ((∃p ∈ P : yp) ∧ (∀p ∈ P : xp =⇒ yp) ∧
(∃p ∈ P : ¬yp ∧ xp)) =⇒ ¬ϕtrap(y)].

Therefore, we construct the following formula:

ϕmintrap(x) = ϕtrap(x)∧

∨
p∈P

xp

∧
∀y

∨
p∈P

yp

 ∧
∧

p∈P
(yp → xp)

 ∧
∨

p∈P
(¬yp ∧ xp)

→ ¬ϕtrap(y)

 .

(iii) We have

M0(Qx) > 0 =⇒ M(Qx) > 0 ⇐⇒ (∃p ∈ Qx : M0(p) > 0) =⇒ (∃p ∈ Qx : M(p) > 0)

⇐⇒ (∃p ∈ P : (xp ∧M0(p) > 0)) =⇒ (∃p ∈ P : (xp ∧M(p) > 0)).

Therefore, we construct the following formula:

ϕconstraints(x) =

∧
p∈P

(xp ∧M0(p) > 0)

→
∧

p∈P
(xp ∧M(p) > 0)

 .

(d) ϕtrap is the conjunction of the following five constraints:

(xp1
∨ xp2

)→ xp1

xp1
→ (xp1

∨ xp2
)

xp2
→ xp4

xp4
→ (xp2

∨ xp3
∨ xp4

)

xp4
→ (xp1

∨ xp4
)

(e) We could try to disprove the existence of M by using the state equation, i.e. by checking whether there
exist no M and x such that

M0 + N · x = M,M(p2) = 2 and M(p3) ≥ 1.

However, there exist infinitely many solutions:

M = (0, 2, 1, 0) and x = (1, 3,m, 1 + m, 0) for any m ∈ N.

Observe that M0 marks the minimal traps {p1} and {p4}, but M(p1) = M(p4) = 0. By combining the
state equation with the fact that minimal trap cannot be emptied, it is possible to conclude that there
exist no solution (M,x). This can be verified automatically with Z3 using the formulas obtained in (c):

; trap(x) holds iff Q_x is a trap

(define-fun trap ((x1 Bool) (x2 Bool) (x3 Bool) (x4 Bool)) Bool

(and

(=> (or x1 x2) (or x1))

(=> (or x1) (or x1 x2))

(=> (or x2) (or x4))

(=> (or x4) (or x2 x3 x4))



(=> (or x4) (or x1 x4))

)

)

; mintrap(x) holds iff Q_x is a minimal trap

(define-fun mintrap ((x1 Bool) (x2 Bool) (x3 Bool) (x4 Bool)) Bool

(and

(trap x1 x2 x3 x4) ; Q_x is a trap

(or x1 x2 x3 x4) ; Q_x is non empty

(forall ((y1 Bool) (y2 Bool) (y3 Bool) (y4 Bool)) ; Every strict subset of Q_x is not a trap

(=>

(and

(or y1 y2 y3 y4) ; Q_y is non empty

(=> y1 x1) (=> y2 x2) (=> y3 x3) (=> y4 x4) ; Q_y subset of Q_y

(or (and (not y1) x1) (and (not y2) x2) ; Q_y != Q_x

(and (not y3) x3) (and (not y4) x4))

)

(not (trap y1 y2 y3 y4)) ; Q(y) is not a trap

)

)

)

)

; constraints(x, M) holds iff "Q_x marks M_0" implies "Q_x marks M"

(define-fun constraints ((x1 Bool) (x2 Bool) (x3 Bool) (x4 Bool)

(m1 Int) (m2 Int) (m3 Int) (m4 Int)) Bool

(=>

(or x1 x4) ; Q_x is marked in M_0, i.e. contains place p1 or p4

(or ; Some place of Q_x is marked in M

(and x1 (> m1 0))

(and x2 (> m2 0))

(and x3 (> m3 0))

(and x4 (> m4 0))

)

)

)

; mreach(m) holds iff there is a solution of the marking equation

; from (2, 0, 0, 1) thats leads to m

(define-fun mreach ((m1 Int) (m2 Int) (m3 Int) (m4 Int)) Bool

(exists ((t1 Int) (t2 Int) (t3 Int) (t4 Int) (t5 Int))

(and

(>= t1 0)

(>= t2 0)

(>= t3 0)

(>= t4 0)

(>= t5 0)

(= m1 (+ 2 t1 (- 0 t2) t5))

(= m2 (+ (* -2 t1) t2 (- 0 t3) t4))

(= m3 t4)

(= m4 (+ 1 t3 (- 0 t4) (- 0 t5)))

)

)

)

; There exists a solution to the marking equation

(declare-const m1 Int)

(declare-const m2 Int)

(declare-const m3 Int)

(declare-const m4 Int)

(assert (>= m1 0))

(assert (= m2 2))

(assert (>= m3 1))

(assert (>= m4 0))



(assert (mreach m1 m2 m3 m4))

; The reachable marking satisfies minimal trap constraints

;; (In general, non minimal trap constraints may be necessary

;; to disprove reachability, but here it's not the case.

;; You may simply replace "mintrap" by "trap" below.)

(assert

(forall ((x1 Bool) (x2 Bool) (x3 Bool) (x4 Bool))

(=>

(mintrap x1 x2 x3 x4)

(constraints x1 x2 x3 x4 m1 m2 m3 m4)

)

)

)

(check-sat)


