Petri nets - Homework 4

Due 05.06.2018

Exercise 4.1

(a) Show that

$$
X=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{N}^{3}:\left(x_{1}+3 \leq x_{2} \leq x_{3}+1\right) \vee\left(x_{2}=2 x_{1}+x_{3}+5\right)\right\}
$$

is semilinear by giving its representation as a finite set of roots and periods.
(b) Give a Petri net whose reachability set equals X up to a projection. More precisely, give a Petri net (with weights) $\mathcal{N}=(P, T, W)$ such that $\left\{p_{\text {init }}, p_{1}, p_{2}, p_{3}\right\} \subseteq P$ and

$$
\left\{p_{\text {init }}\right\} \xrightarrow{*} M \text { and } M\left(p_{\text {init }}\right)=0 \Longleftrightarrow\left(M\left(p_{1}\right), M\left(p_{2}\right), M\left(p_{3}\right)\right) \in X .
$$

Exercise 4.2

Consider the following Petri net (with weights) \mathcal{N} :

(a) Build the incidence matrix of \mathcal{N}.
(b) Let $M_{0}=\left\{p_{1}, p_{1}\right\}$. Try to determine whether

$$
\begin{aligned}
& M_{0} \xrightarrow{*}\left\{p_{1}, p_{1}, p_{1}, p_{4}\right\}, \\
& M_{0} \xrightarrow{\rightarrow}\left\{p_{1}, p_{1}, p_{1}, p_{1}, p_{2}\right\}, \\
& M_{0} \xrightarrow{*}\left\{p_{1}, p_{2}, p_{5}\right\},
\end{aligned}
$$

by solving the marking equation.
(c) Does $\left\{p_{1}, p_{5}\right\} \xrightarrow{*}\left\{p_{2}, p_{2}, p_{2}, p_{4}\right\}$? Prove your answer.

Exercise 4.3

Consider the following Petri net $\mathcal{N}=(P, T, F)$:

(a) Give a basis of the vector space of S-invariants of \mathcal{N}. [Hint:
(b) Let $M=\left\{p_{1}, p_{2}, p_{4}, p_{4}\right\}$ and $M^{\prime}=\left\{p_{1}, p_{3}, p_{5}\right\}$. Using (a), can you tell whether (\mathcal{N}, M) and $\left(\mathcal{N}, M^{\prime}\right)$ are bounded? live?

Solution 4.1

(a)

$$
\begin{aligned}
X= & (0,3,2)+\mathbb{N} \cdot(1,1,1)+\mathbb{N} \cdot(0,1,1)+\mathbb{N} \cdot(0,0,1) \cup \\
& (0,5,0)+\mathbb{N} \cdot(1,2,0)+\mathbb{N} \cdot(0,1,1)
\end{aligned}
$$

(b)

Solution 4.2

(a)

$$
\boldsymbol{N}=\begin{array}{r|rrrrr}
& t_{1} & t_{2} & t_{3} & t_{4} & t_{5} \\
\hline p_{1} & -1 & 3 & 0 & 0 & 0 \\
p_{2} & 1 & -1 & -1 & 2 & 0 \\
p_{3} & 0 & 0 & 0 & 0 & 2 \\
p_{4} & 0 & -1 & 0 & 1 & -1 \\
p_{5} & 0 & 0 & 1 & -1 & 0
\end{array}
$$

\star This can be verified using PIPE by loading the Petri net, clicking on "Incidence \& Marking" in the left menu, and comparing with the "Combined incidence matrix".
(b) Let us first write the markings as vectors:

$$
M_{0}=\left(\begin{array}{l}
2 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad M_{1}=\left(\begin{array}{l}
3 \\
0 \\
0 \\
1 \\
0
\end{array}\right), \quad M_{2}=\left(\begin{array}{l}
4 \\
1 \\
0 \\
0 \\
0
\end{array}\right), \quad M_{3}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

We need to solve $M_{i}=M_{0}+\boldsymbol{N} \cdot X$, for each $i \in\{1,2,3\}$, which is equivalent to solving $\boldsymbol{N} \cdot X=M_{i}-M_{0}$. All three systems of equations can be solved simultaneously by using Gaussian elimination:

$$
\left(\begin{array}{rrrrr|rrr}
-1 & 3 & 0 & 0 & 0 & 1 & 2 & -1 \\
1 & -1 & -1 & 2 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{lllll|rrr}
1 & 0 & 0 & 0 & 0 & -1 & 1 & 2 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 / 3 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 4 / 3 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 / 3 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Markings M_{1} and M_{3} are not reachable from M_{0} since their associated (unique) solutions contain respectively negative and non integer values. Since the marking equation for M_{2} has a non negative integer solution, we cannot conclude whether M_{2} can be reached or not. In fact, a closer look at the Petri net shows that it is reachable since $M_{0} \xrightarrow{t_{1} t_{3} t_{4} t_{2}} M_{2}$.
(c) Let us first write the markings as vectors:

$$
M_{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right), \quad M=\left(\begin{array}{l}
3 \\
0 \\
0 \\
1 \\
0
\end{array}\right) .
$$

Let us solve the marking equation $N \cdot X=M-M_{0}$:

$$
\left(\begin{array}{rrrrr|r}
-1 & 3 & 0 & 0 & 0 & -1 \\
1 & -1 & -1 & 2 & 0 & 3 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & -1 & 0 & 1 & -1 & 1 \\
0 & 0 & 1 & -1 & 0 & -1
\end{array}\right) \sim\left(\begin{array}{lllll|r}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

As there exists a non negative integer solution, we cannot conclude anything immediately. Let us analyze the solution more carefully. Transitions t_{1} and t_{4} must be fired exactly once, and all other transitions must not be fired. Transition t_{1} is disabled in M_{0}, so t_{4} must be fired first, leading to the marking $\left\{p_{1}, p_{2}, p_{2}, p_{4}\right\}$. Transition t_{1} is still disabled in this marking, which implies that M is not reachable.

Solution 4.3

(a) Recall that I is an S-invariant if and only if $\sum_{p \in \bullet} I(p)=\sum_{p \in t} \cdot I(p)$ for every $t \in T$. This gives rise to the following system of equations:

$$
\begin{aligned}
I\left(p_{2}\right) & =I\left(p_{1}\right)+I\left(p_{4}\right)+I\left(p_{5}\right), \\
I\left(p_{2}\right)+I\left(p_{3}\right) & =I\left(p_{2}\right)+I\left(p_{6}\right)+I\left(p_{7}\right), \\
I\left(p_{1}\right) & =I\left(p_{4}\right), \\
I\left(p_{5}\right) & =I\left(p_{4}\right), \\
I\left(p_{5}\right)+I\left(p_{6}\right) & =I\left(p_{5}\right)+I\left(p_{7}\right),
\end{aligned}
$$

which is equivalent to:

$$
\begin{aligned}
& I\left(p_{2}\right)=3 \cdot I\left(p_{1}\right), \\
& I\left(p_{3}\right)=2 \cdot I\left(p_{6}\right), \\
& I\left(p_{4}\right)=I\left(p_{1}\right), \\
& I\left(p_{5}\right)=I\left(p_{1}\right), \\
& I\left(p_{7}\right)=I\left(p_{6}\right) .
\end{aligned}
$$

Therefore, each S-invariant I is fully determined by $I\left(p_{1}\right)$ and $I\left(p_{6}\right)$, and hence the vector space of S invariants is given by:

$$
x \cdot\left(\begin{array}{lllllll}
1 & 3 & 0 & 1 & 1 & 0 & 0
\end{array}\right)+y \cdot\left(\begin{array}{lllllll}
0 & 0 & 2 & 0 & 0 & 1 & 1
\end{array}\right) \quad \text { for } x, y \in \mathbb{Q} .
$$

\star This can be verified using PIPE by loading the Petri net and clicking on "Invariant Analysis" in the left menu.
(b) If a Petri net has a positive S-invariant, then it is bounded from any initial marking. By (a), taking $x, y>0$ yields a positive S-invariants, e.g. $\left(\begin{array}{lllllll}1 & 3 & 2 & 1 & 1 & 1 & 1\end{array}\right)$ obtained by taking $x=y=1$. Therefore, \mathcal{N} is bounded both from M and M^{\prime}.

Assume that (\mathcal{N}, M) is live, then $I \cdot M>0$ for every semi-positive S-invariant I. By (a), semi-positive S-invariants of \mathcal{N} are obtained by taking $x, y \geq 0$ and $x+y>0$. Therefore, we have

$$
\left(\begin{array}{lllllll}
1 & 1 & 0 & 2 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
3 x \\
2 y \\
x \\
x \\
y \\
y
\end{array}\right)=5 x
$$

When $x=0$, we have $5 x=0$ which contradicts the fact that (\mathcal{N}, M) is live. Therefore, it is not live.
Let us do the same calculations for M^{\prime} :

$$
\left(\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
3 x \\
2 y \\
x \\
x \\
y \\
y
\end{array}\right)=2 x+2 y
$$

Since $x+y>0$, we have $2 x+2 y=2(x+y)>0$. This implies that $I \cdot M^{\prime}>0$ for every semi-positive S-invariant I. Therefore, we cannot conclude whether $\left(\mathcal{N}, M^{\prime}\right)$ is live or not.

