Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

Petri nets — Homework 3

Due 23.05.2018

Exercise 3.1

The algorithm COVERABILITY-GRAPH does not specify how the coverability graph should be traversed during its construction. Show that different traversal strategies can lead to different coverability graphs. More precisely, exhibit a marking M and two different coverability graphs for (\mathcal{N}, M) , where \mathcal{N} is the following net:

Exercise 3.2 Let \mathcal{N} and \mathcal{N}' be respectively the left and right Petri nets below.

Use the backward algorithm to answer the following questions.

- (a) Describe the set of initial markings from which $\{p_2, p_2\}$ is coverable in \mathcal{N} . Illustrate this set.
- (b) Determine whether $\{q_1, q_3\}$ is coverable from $\{q_1\}$ in \mathcal{N}' .
- (c) Determine whether $\{q_1, q_2\}$ is coverable from $\{q_1\}$ in \mathcal{N}' .

Exercise 3.3

A net with reset, doubling and transfer arcs is a tuple (P, T, F, R, D, Tr) where (P, T, F) is a net,

$$R \subseteq P \times T, \ D \subseteq T \times P, \ Tr \subseteq (P \times T) \cup (T \times P),$$

and F, R, D and Tr are pairwise disjoint. Let $M \in \mathbb{N}^P$ and $t \in T$. We say that t is enabled at M if M(p) > 0 for every $(p,t) \in F$. Firing t at M has the following effect:

- every arc $(p, t) \in F$ consumes a token from p;
- every arc $(t, p) \in F$ produces a token in p;
- every arc $(p, t) \in R$ empties p;
- every arc $(t, p) \in D$ doubles the amount of tokens in p;
- every arc $(p, t) \in Tr$ empties p;
- every arc $(t, p) \in Tr$ adds $\sum_{(q,t)\in Tr} M(q)$ tokens to p.

Show that the backward algorithm works for this extended class of nets by showing that it is monotonic, i.e. show that for every markings $X, X', Y \in \mathbb{N}^P$, if $X \to Y$ and $X' \ge X$, then $X' \to Y'$ for some $Y' \ge Y$.

Exercise 3.4

- (a) Show that nets with inhibitor arcs are not monotonic.
- (b) Give a net with reset arcs \mathcal{N} and a marking M such that (\mathcal{N}, M) is bounded, but such that there exists a sequence $M \xrightarrow{\sigma} M' \xrightarrow{\sigma'} M''$ with $M'' \ge M'$ and $M'' \ne M'$.

Solution 3.1

Let $M = \{p_1\}$. We exhibit two coverability graphs for (\mathcal{N}, M) , where nodes are labeled with respect to the total order $p_1 < p_2$. We construct the first coverability graph by first exploring the path $t_2 t_3 t_1 t_1$:

For the second coverability graph, we first explore the path $t_2t_1t_3$:

Note that the subprocedure ADDOMEGAS generates (ω, ω) after exploring $t_2t_1t_3$ because, at this point, both (1,0) and (0,1) are "ancestors" of the current node labeled by (1,1).

Solution 3.2

(a) We execute the backward algorithm from M = (0, 2). In order to build the whole set of initial markings, we ignore the stopping criterion based on M_0 .

The set of initial markings is $\{M \in \mathbb{N}^2 : M \ge (0,2) \text{ or } M \ge (2,1) \text{ or } M \ge (3,0)\}.$

(b) We want to determine whether M = (1, 0, 1) is coverable from $M_0 = (1, 0, 0)$. It is not the case, since executing the backward algorithm from M does not generate any marking less or equal to M_0 :

Iteration	$\operatorname{pre}(m)$	<i>m</i>
0	_	$\{(1,0,1)\}$
1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\{(1,0,1),(0,0,2),(2,1,0)\}$
2	$\begin{array}{rcl} \mathrm{pre}_{s_1}(1,0,1) &=& (1,0,1)\\ \mathrm{pre}_{s_2}(1,0,1) &=& (0,0,2)\\ \mathrm{pre}_{s_3}(1,0,1) &=& (2,1,0)\\ \mathrm{pre}_{s_1}(0,0,2) &=& (1,0,2)\\ \mathrm{pre}_{s_2}(0,0,2) &=& (0,0,3)\\ \mathrm{pre}_{s_3}(0,0,2) &=& (1,1,1)\\ \mathrm{pre}_{s_1}(2,1,0) &=& (2,0,0)\\ \mathrm{pre}_{s_2}(2,1,0) &=& (1,1,1)\\ \mathrm{pre}_{s_3}(2,1,0) &=& (3,2,0) \end{array}$	$\{(1,0,1),(0,0,2),(2,0,0)\}$
3	$\begin{array}{rcl} \mathrm{pre}_{s_1}(2,0,0) &=& (2,0,0)\\ \mathrm{pre}_{s_2}(2,0,0) &=& (1,0,1)\\ \mathrm{pre}_{s_3}(2,0,0) &=& (3,1,0) \end{array}$	$\underbrace{\{(1,0,1),(0,0,2),(2,0,0)\}}_{\text{unchanged}}$

(c) We want to determine whether M' = (1, 1, 0) is coverable from $M_0 = (1, 0, 0)$. It is the case, since executing the backward algorithm from M' yields M_0 after one iteration:

Iteration	$\operatorname{pre}(m)$	m
0		$\{(1,1,0)\}$
1	$\begin{array}{rcl} \mathrm{pre}_{s_1}(1,1,0) &=& (1,0,0) \\ \mathrm{pre}_{s_2}(1,1,0) &=& (0,1,1) \\ \mathrm{pre}_{s_3}(1,1,0) &=& (2,2,0) \end{array}$	$\{\underbrace{(1,0,0)}_{\leq M_0},(0,1,1)\}$

Solution 3.3

t

Let $X, X', Y \in \mathbb{N}^P$ and $t \in T$ be such that $X \xrightarrow{t} Y$ and $X' \ge X$. Let us first argue that t is enabled at X':

$$\begin{split} \text{is enabled at } X & \Longleftrightarrow X(p) > 0 \text{ for every } (p,t) \in F \\ & \Longrightarrow X'(p) > 0 \text{ for every } (p,t) \in F \\ & \Leftrightarrow t \text{ is enabled at } X'. \end{split}$$

Let $Y' \in \mathbb{N}^P$ be the marking such that $X' \xrightarrow{t} Y'$. Let $p \in P$. It remains to show that $Y'(p) \ge Y(p)$. We only prove the case where p is not in both the preset and postset of t:

Case	Proof
$(p,t)\in F$	$Y'(p) = X'(p) - 1 \ge X(p) - 1 = Y(p)$
$(t,p)\in F$	$Y'(p) = X'(p) + 1 \ge X(p) + 1 = Y(p)$
$(p,t) \in R$	Y'(p) = 0 = Y(p)
$(t,p) \in D$	$Y'(p) = 2 \cdot X'(p) \ge 2 \cdot X'(p) = Y(p)$
$(p,t) \in Tr$	Y'(p) = 0 = Y(p)
$(t,p) \in Tr$	$Y'(p) = X'(p) + \sum_{(q,t)\in Tr} X'(q) \ge X(p) + \sum_{(q,t)\in Tr} X(q) = Y(p)$

Solution 3.4

(a) Let \mathcal{N} be the following Petri net with inhibitor arcs:

We have $(0,0) \xrightarrow{t} (0,1)$, but t is not enabled at (1,0).

(b) Consider the following Petri net \mathcal{N} where the arc from p_3 to t_3 is a reset arc.

It is bounded since its reachability graph is finite:

Moreover, we have $(0, 1, 1, 1, 0) \xrightarrow{\varepsilon} (0, 1, 1, 1, 0) \xrightarrow{t_3t_1t_2} (0, 1, 2, 1, 0).$