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Petri nets — Homework 3
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Exercise 3.1

The algorithm Coverability-Graph does not specify how the coverability graph should be traversed during
its construction. Show that different traversal strategies can lead to different coverability graphs. More precisely,
exhibit a marking M and two different coverability graphs for (N ,M), where N is the following net:
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Exercise 3.2

Let N and N ′ be respectively the left and right Petri nets below.
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Use the backward algorithm to answer the following questions.

(a) Describe the set of initial markings from which {p2, p2} is coverable in N . Illustrate this set.

(b) Determine whether {q1, q3} is coverable from {q1} in N ′.

(c) Determine whether {q1, q2} is coverable from {q1} in N ′.



Exercise 3.3

A net with reset, doubling and transfer arcs is a tuple (P, T, F,R,D, Tr) where (P, T, F ) is a net,

R ⊆ P × T, D ⊆ T × P, Tr ⊆ (P × T ) ∪ (T × P ),

and F , R, D and Tr are pairwise disjoint. Let M ∈ NP and t ∈ T . We say that t is enabled at M if M(p) > 0
for every (p, t) ∈ F . Firing t at M has the following effect:

• every arc (p, t) ∈ F consumes a token from p;

• every arc (t, p) ∈ F produces a token in p;

• every arc (p, t) ∈ R empties p;

• every arc (t, p) ∈ D doubles the amount of tokens in p;

• every arc (p, t) ∈ Tr empties p;

• every arc (t, p) ∈ Tr adds
∑

(q,t)∈TrM(q) tokens to p.

Show that the backward algorithm works for this extended class of nets by showing that it is monotonic, i.e.
show that for every markings X,X ′, Y ∈ NP , if X −→ Y and X ′ ≥ X, then X ′ −→ Y ′ for some Y ′ ≥ Y .

Exercise 3.4

(a) Show that nets with inhibitor arcs are not monotonic.

(b) Give a net with reset arcs N and a marking M such that (N ,M) is bounded, but such that there exists

a sequence M
σ−→M ′

σ′

−→M ′′ with M ′′ ≥M ′ and M ′′ 6= M ′.



Solution 3.1

Let M = {p1}. We exhibit two coverability graphs for (N ,M), where nodes are labeled with respect to the
total order p1 < p2. We construct the first coverability graph by first exploring the path t2t3t1t1:

1, 0 0, 1

0, ω1, ωω, ω

t2

t3

t1t1

t1
t3

t3t3 t2t1, t2, t3

For the second coverability graph, we first explore the path t2t1t3:

1, 0 0, 1

0, ωω, ω
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Note that the subprocedure AddOmegas generates (ω, ω) after exploring t2t1t3 because, at this point, both
(1, 0) and (0, 1) are “ancestors” of the current node labeled by (1, 1).



Solution 3.2

(a) We execute the backward algorithm from M = (0, 2). In order to build the whole set of initial markings,
we ignore the stopping criterion based on M0.

Iteration pret1(m) pret2(m) m

0 — —

1

2

3 sets left unchanged

The set of initial markings is {M ∈ N2 : M ≥ (0, 2) or M ≥ (2, 1) or M ≥ (3, 0)}.



(b) We want to determine whether M = (1, 0, 1) is coverable from M0 = (1, 0, 0). It is not the case, since
executing the backward algorithm from M does not generate any marking less or equal to M0:

Iteration pre(m) m

0 — {(1, 0, 1)}

1

pres1(1, 0, 1) = (1, 0, 1)
pres2(1, 0, 1) = (0, 0, 2)
pres3(1, 0, 1) = (2, 1, 0)

{(1, 0, 1), (0, 0, 2), (2, 1, 0)}

2

pres1(1, 0, 1) = (1, 0, 1)
pres2(1, 0, 1) = (0, 0, 2)
pres3(1, 0, 1) = (2, 1, 0)

pres1(0, 0, 2) = (1, 0, 2)
pres2(0, 0, 2) = (0, 0, 3)
pres3(0, 0, 2) = (1, 1, 1)

pres1(2, 1, 0) = (2, 0, 0)
pres2(2, 1, 0) = (1, 1, 1)
pres3(2, 1, 0) = (3, 2, 0)

{(1, 0, 1), (0, 0, 2), (2, 0, 0)}

3
pres1(2, 0, 0) = (2, 0, 0)
pres2(2, 0, 0) = (1, 0, 1)
pres3(2, 0, 0) = (3, 1, 0)

{(1, 0, 1), (0, 0, 2), (2, 0, 0)}︸ ︷︷ ︸
unchanged

(c) We want to determine whether M ′ = (1, 1, 0) is coverable from M0 = (1, 0, 0). It is the case, since
executing the backward algorithm from M ′ yields M0 after one iteration:

Iteration pre(m) m

0 — {(1, 1, 0)}

1

pres1(1, 1, 0) = (1, 0, 0)
pres2(1, 1, 0) = (0, 1, 1)
pres3(1, 1, 0) = (2, 2, 0)

{(1,0,0)︸ ︷︷ ︸
≤M0

, (0, 1, 1)}

Solution 3.3

Let X,X ′, Y ∈ NP and t ∈ T be such that X
t−→ Y and X ′ ≥ X. Let us first argue that t is enabled at X ′:

t is enabled at X ⇐⇒ X(p) > 0 for every (p, t) ∈ F

=⇒ X ′(p) > 0 for every (p, t) ∈ F (since X ′ ≥ X)

⇐⇒ t is enabled at X ′.

Let Y ′ ∈ NP be the marking such that X ′
t−→ Y ′. Let p ∈ P . It remains to show that Y ′(p) ≥ Y (p). We only

prove the case where p is not in both the preset and postset of t:

Case Proof

(p, t) ∈ F Y ′(p) = X ′(p)− 1 ≥ X(p)− 1 = Y (p)

(t, p) ∈ F Y ′(p) = X ′(p) + 1 ≥ X(p) + 1 = Y (p)

(p, t) ∈ R Y ′(p) = 0 = Y (p)

(t, p) ∈ D Y ′(p) = 2 ·X ′(p) ≥ 2 ·X ′(p) = Y (p)

(p, t) ∈ Tr Y ′(p) = 0 = Y (p)

(t, p) ∈ Tr Y ′(p) = X ′(p) +
∑

(q,t)∈TrX
′(q) ≥ X(p) +

∑
(q,t)∈TrX(q) = Y (p)



Solution 3.4

(a) Let N be the following Petri net with inhibitor arcs:

= 0?
p
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We have (0, 0)
t−→ (0, 1), but t is not enabled at (1, 0).

(b) Consider the following Petri net N where the arc from p3 to t3 is a reset arc.
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It is bounded since its reachability graph is finite:

0, 1, 1, 1, 0

1, 0, 0, 0, 1

0, 1, 1, 0, 1 1, 0, 1, 1, 0

0, 1, 2, 1, 0
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Moreover, we have (0, 1, 1, 1, 0)
ε−→ (0, 1, 1, 1, 0)

t3t1t2−−−−→ (0, 1, 2, 1, 0).


