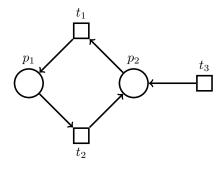
Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

Petri nets — Homework 3

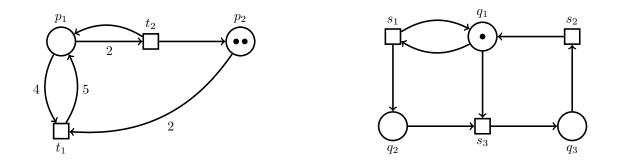
Due 23.05.2018

Exercise 3.1

The algorithm COVERABILITY-GRAPH does not specify how the coverability graph should be traversed during its construction. Show that different traversal strategies can lead to different coverability graphs. More precisely, exhibit a marking M and two different coverability graphs for (\mathcal{N}, M) , where \mathcal{N} is the following net:



Exercise 3.2 Let \mathcal{N} and \mathcal{N}' be respectively the left and right Petri nets below.



Use the backward algorithm to answer the following questions.

- (a) Describe the set of initial markings from which $\{p_2, p_2\}$ is coverable in \mathcal{N} . Illustrate this set.
- (b) Determine whether $\{q_1, q_3\}$ is coverable from $\{q_1\}$ in \mathcal{N}' .
- (c) Determine whether $\{q_1, q_2\}$ is coverable from $\{q_1\}$ in \mathcal{N}' .

Exercise 3.3

A net with reset, doubling and transfer arcs is a tuple (P, T, F, R, D, Tr) where (P, T, F) is a net,

$$R \subseteq P \times T, \ D \subseteq T \times P, \ Tr \subseteq (P \times T) \cup (T \times P),$$

and F, R, D and Tr are pairwise disjoint. Let $M \in \mathbb{N}^P$ and $t \in T$. We say that t is enabled at M if M(p) > 0 for every $(p,t) \in F$. Firing t at M has the following effect:

- every arc $(p, t) \in F$ consumes a token from p;
- every arc $(t, p) \in F$ produces a token in p;
- every arc $(p, t) \in R$ empties p;
- every arc $(t, p) \in D$ doubles the amount of tokens in p;
- every arc $(p, t) \in Tr$ empties p;
- every arc $(t, p) \in Tr$ adds $\sum_{(q,t)\in Tr} M(q)$ tokens to p.

Show that the backward algorithm works for this extended class of nets by showing that it is monotonic, i.e. show that for every markings $X, X', Y \in \mathbb{N}^P$, if $X \to Y$ and $X' \ge X$, then $X' \to Y'$ for some $Y' \ge Y$.

Exercise 3.4

- (a) Show that nets with inhibitor arcs are not monotonic.
- (b) Give a net with reset arcs \mathcal{N} and a marking M such that (\mathcal{N}, M) is bounded, but such that there exists a sequence $M \xrightarrow{\sigma} M' \xrightarrow{\sigma'} M''$ with $M'' \ge M'$ and $M'' \ne M'$.