Petri nets — Homework 2

Due 08.05.2018

Exercise 2.1

- (a) Give a net \mathcal{N} and two markings M and M' such that $M \leq M'$, (\mathcal{N}, M) is bounded, and (\mathcal{N}, M') is not bounded.
- (b) Give a net \mathcal{N} and two markings M and M' such that $M \leq M'$, (\mathcal{N}, M) is deadlock-free, and (\mathcal{N}, M') is not deadlock-free.
- (c) Consider the following net \mathcal{N} (with weighted arcs):

Give markings M and M' such that $M \leq M'$, (\mathcal{N}, M) is live, and (\mathcal{N}, M') is deadlock-free but not live.

Exercise 2.2

Let $\mathcal{N} = (P, T, W)$ be a net with weighted arcs. Let $M, M' \in \mathbb{N}^P$, $\sigma, \sigma' \in T^*$ and $t \in T$ be such that $M \xrightarrow{\sigma t \sigma'} M'$. Prove or disprove the following statements:

- (a) if t does not consume any token, i.e W(p,t) = 0 for every $p \in P$, then $M \xrightarrow{t\sigma\sigma'} M'$.
- (b) if t consumes no more tokens than it produces, i.e $W(p,t) \leq W(t,p)$ for every $p \in P$, then $M \xrightarrow{t\sigma\sigma'} M'$.
- (c) if t does not produce any token, i.e. W(t,p) = 0 for every $p \in P$, then $M \xrightarrow{\sigma\sigma' t} M'$.
- (d) if t produces no more tokens than it consumes, i.e. $W(t,p) \leq W(p,t)$ for every $p \in P$, then $M \xrightarrow{\sigma\sigma' t} M'$.

Exercise 2.3

Show that nets with place capacities and nets with weighted arcs are equivalent to standard nets. More precisely, sketch two algorithms solving the two following problems. The worst-case running time of your algorithms should be exponential.

INPUT: a net with place capacities $\mathcal{N} = (S, T, F, K)$, and two markings M and M'.

OUTPUT: a net $\mathcal{N}' = (S', T', F')$, and two markings L and L', such that $M \xrightarrow{*} M'$ in \mathcal{N} if and only if $L \xrightarrow{*} L'$ in \mathcal{N}' .

Apply your algorithm on the net below to the left with $M = \{2 \cdot q_1, q_2\}$ and $M' = \{2 \cdot q_1, q_3\}$.

(b)

INPUT: a net with weighted arcs $\mathcal{N} = (S, T, W)$ and a markings M and M'.

OUTPUT: a net $\mathcal{N}' = (S', T', F')$, and two markings L and L', such that $M \xrightarrow{*} M'$ in \mathcal{N} if and only if $L \xrightarrow{*} L'$ in \mathcal{N}' .

Apply your algorithm on the net below to the right with $M = \{q_2\}$ and $M' = \{q_1, 2 \cdot q_2, q_3\}$.

Exercise 2.4 Consider the following net $\mathcal{N} = (P, T, F)$:

- (a) Draw a coverability graph for $(\mathcal{N}, \{p_1\})$.
- (b) Is $(\mathcal{N}, \{p_1\})$ bounded? If so, why? If not, which places are bounded?

- (c) Describe the set of markings coverable from $\{p_1\}$.
- (d) We say that a Petri net (\mathcal{N}, M_0) terminates if all its firing sequences are finite. Does $(\mathcal{N}, \{p_1\})$ terminate? Justify your answer.

Solution 2.1

(a) The following net is bounded from the empty marking since its reachability set is empty. However, it is not bounded from $\{p\}$ since repetitively firing t increases the number of tokens in q.

(b) The following net is deadlock-free from $\{p\}$ since s is always enabled. However, it is not deadlock-free from $\{p,q\}$ since $\{p,q\} \xrightarrow{t} \{r\}$ and $\{r\}$ is dead.

(c) \mathcal{N} is live from $M = \{q, q, q\}$, since the reachability graph of (\mathcal{N}, M) is strongly connected and it enables all transitions:

Let us build the reachability graph of (\mathcal{N}, M') where $M' = \{q, q, q, q\}$:

 \mathcal{N} is deadlock-free from M', since each marking of the reachability graph enables a transition. However, \mathcal{N} is not live from M', since the bottom strongly connected component colored in blue only enables r.

Solution 2.2

(a) True. Let $A, A' \in \mathbb{N}^P$ be such that $M \xrightarrow{\sigma} A \xrightarrow{t} A' \xrightarrow{\sigma'} M'$. Since W(p,t) = 0 for every $p \in P$, t is enabled at any marking. In particular, $A' - A \ge \mathbf{0}$. Thus, $M \xrightarrow{t} M + (A' - A)$ and, by monotonicity, $M + (A' - A) \xrightarrow{\sigma} A + (A' - A)$. Therefore,

$$M \xrightarrow{t} M + (A' - A) \xrightarrow{\sigma} A' \xrightarrow{\sigma'} M'.$$

(b) False. Consider the following Petri net:

We have $0 \xrightarrow{st} 1$ and W(p,t) = W(t,p), yet ts cannot be fired from 0.

- (c) True. The proof is symmetric to (a).
- (d) False. Consider the following Petri net:

We have $1 \xrightarrow{ts} 0$ and W(t, p) = W(p, t), yet ts cannot be fired from 1.

Solution 2.3

(a) We define $\mathcal{N}' = (S', T', F')$ as:

$$\begin{split} S' &= S \cup \{q' : q \in P \text{ s.t. } K(q) \neq \infty \}, \\ T' &= T, \\ F' &= F \cup \{(q',t) : (t,q) \in F', K(q) \neq \infty \} \cup \{(t,q') : (q,t) \in F', K(q) \neq \infty \}. \end{split}$$

Marking L is defined as the marking such that L(q) = M(q) for every $q \in Q$ and L(q') = K(q) - M(q) for every $q \in Q$ such that $K(q) \neq \infty$. Marking L' is defined similarly.

The resulting net is:

and the resulting markings are:

$$L = \{2 \cdot q_1, 3 \cdot q'_1, q_2, 3 \cdot q'_3\},\$$

$$L' = \{q_1, 4 \cdot q'_1, 2 \cdot q_2, q_3, 2 \cdot q'_3\}.$$

(b) Let us first give a net for the given net with weighted arcs:

where the markings are:

$$L = \{q_2, r\},\$$

$$L' = \{q_1, 2 \cdot q_2, q_3, r\}.$$

More generally, a transition such as:

can be converted into the following gadget:

where s^{-1} denotes the inverse transition of s, i.e., $(p, s^{-1}) \in F \iff (s, p) \in F$ and $(s^{-1}, p) \in F \iff (p, s) \in F$ for every place p. Note that place r must be shared by all gadgets.

Solution 2.4

(a) The following is a coverability graph where nodes are labeled with respect to the total order $p_1 < p_2 < p_3 < p_4$:

(b) It is not bounded since some markings of the graph contain ω . Places p_1 , p_2 and p_3 are bounded because no marking of the graph contains an ω in the three first components.

 \star This can also be tested with LoLA as follows:

```
> lola pn_2-4.lola -f "AG (p1 < oo)" --search=cover
lola: result: yes
lola: The net satisfies the given formula.
> lola pn_2-4.lola -f "AG (p2 < oo)" --search=cover
lola: result: yes
lola: The net satisfies the given formula.
> lola pn_2-4.lola -f "AG (p3 < oo)" --search=cover
lola: result: yes
```

lola: The net satisfies the given formula.

> lola pn_2-4.lola -f "AG (p4 < oo)" --search=cover lola: result: no lola: The net does not satisfy the given formula.

(c) $\{M \in \mathbb{N}^P : M(p_1) + M(p_2) + M(p_3) = 1\}.$

(d) No, it does not terminate. A Petri net terminates if and only if its coverability graph contains a cycle or at least one node with an ω . The above coverability graph contains both. In particular, $t_3t_1(t_2t_4)^{\omega}$ is an infinite firing sequence.