Petri nets - Homework 2

Due 08.05.2018

Exercise 2.1

(a) Give a net \mathcal{N} and two markings M and M^{\prime} such that $M \leq M^{\prime},(\mathcal{N}, M)$ is bounded, and $\left(\mathcal{N}, M^{\prime}\right)$ is not bounded.
(b) Give a net \mathcal{N} and two markings M and M^{\prime} such that $M \leq M^{\prime},(\mathcal{N}, M)$ is deadlock-free, and $\left(\mathcal{N}, M^{\prime}\right)$ is not deadlock-free.
(c) Consider the following net \mathcal{N} (with weighted arcs):

Give markings M and M^{\prime} such that $M \leq M^{\prime},(\mathcal{N}, M)$ is live, and $\left(\mathcal{N}, M^{\prime}\right)$ is deadlock-free but not live.

Exercise 2.2

Let $\mathcal{N}=(P, T, W)$ be a net with weighted arcs. Let $M, M^{\prime} \in \mathbb{N}^{P}, \sigma, \sigma^{\prime} \in T^{*}$ and $t \in T$ be such that $M \xrightarrow{\sigma t \sigma^{\prime}} M^{\prime}$. Prove or disprove the following statements:
(a) if t does not consume any token, i.e $W(p, t)=0$ for every $p \in P$, then $M \xrightarrow{t \sigma \sigma^{\prime}} M^{\prime}$.
(b) if t consumes no more tokens than it produces, i.e $W(p, t) \leq W(t, p)$ for every $p \in P$, then $M \xrightarrow{t \sigma \sigma^{\prime}} M^{\prime}$.
(c) if t does not produce any token, i.e. $W(t, p)=0$ for every $p \in P$, then $M \xrightarrow{\sigma \sigma^{\prime} t} M^{\prime}$.
(d) if t produces no more tokens than it consumes, i.e. $W(t, p) \leq W(p, t)$ for every $p \in P$, then $M \xrightarrow{\sigma \sigma^{\prime} t} M^{\prime}$.

Exercise 2.3

Show that nets with place capacities and nets with weighted arcs are equivalent to standard nets. More precisely, sketch two algorithms solving the two following problems. The worst-case running time of your algorithms should be exponential.
(a)

Input: a net with place capacities $\mathcal{N}=(S, T, F, K)$, and two markings M and M^{\prime}.
Output: a net $\mathcal{N}^{\prime}=\left(S^{\prime}, T^{\prime}, F^{\prime}\right)$, and two markings L and L^{\prime}, such that $M \xrightarrow{*} M^{\prime}$ in \mathcal{N} if and only if $L \xrightarrow{*} L^{\prime}$ in \mathcal{N}^{\prime}.

Apply your algorithm on the net below to the left with $M=\left\{2 \cdot q_{1}, q_{2}\right\}$ and $M^{\prime}=\left\{2 \cdot q_{1}, q_{3}\right\}$.
(b)

Input: a net with weighted $\operatorname{arcs} \mathcal{N}=(S, T, W)$ and a markings M and M^{\prime}.
Output: a net $\mathcal{N}^{\prime}=\left(S^{\prime}, T^{\prime}, F^{\prime}\right)$, and two markings L and L^{\prime}, such that $M \xrightarrow{*} M^{\prime}$ in \mathcal{N} if and only if $L \xrightarrow{*} L^{\prime}$ in \mathcal{N}^{\prime}.

Apply your algorithm on the net below to the right with $M=\left\{q_{2}\right\}$ and $M^{\prime}=\left\{q_{1}, 2 \cdot q_{2}, q_{3}\right\}$.

Exercise 2.4

Consider the following net $\mathcal{N}=(P, T, F)$:

(a) Draw a coverability graph for $\left(\mathcal{N},\left\{p_{1}\right\}\right)$.
(b) Is $\left(\mathcal{N},\left\{p_{1}\right\}\right)$ bounded? If so, why? If not, which places are bounded?
(c) Describe the set of markings coverable from $\left\{p_{1}\right\}$.
(d) We say that a Petri net $\left(\mathcal{N}, M_{0}\right)$ terminates if all its firing sequences are finite. Does $\left(\mathcal{N},\left\{p_{1}\right\}\right)$ terminate? Justify your answer.

Solution 2.1

(a) The following net is bounded from the empty marking since its reachability set is empty. However, it is not bounded from $\{p\}$ since repetitively firing t increases the number of tokens in q.

(b) The following net is deadlock-free from $\{p\}$ since s is always enabled. However, it is not deadlock-free from $\{p, q\}$ since $\{p, q\} \xrightarrow{t}\{r\}$ and $\{r\}$ is dead.

(c) \mathcal{N} is live from $M=\{q, q, q\}$, since the reachability graph of (\mathcal{N}, M) is strongly connected and it enables all transitions:

Let us build the reachability graph of $\left(\mathcal{N}, M^{\prime}\right)$ where $M^{\prime}=\{q, q, q, q\}$:

\mathcal{N} is deadlock-free from M^{\prime}, since each marking of the reachability graph enables a transition. However, \mathcal{N} is not live from M^{\prime}, since the bottom strongly connected component colored in blue only enables r.

Solution 2.2

(a) True. Let $A, A^{\prime} \in \mathbb{N}^{P}$ be such that $M \xrightarrow{\sigma} A \xrightarrow{t} A^{\prime} \xrightarrow{\sigma^{\prime}} M^{\prime}$. Since $W(p, t)=0$ for every $p \in P, t$ is enabled at any marking. In particular, $A^{\prime}-A \geq \mathbf{0}$. Thus, $M \xrightarrow{t} M+\left(A^{\prime}-A\right)$ and, by monotonicity, $M+\left(A^{\prime}-A\right) \xrightarrow{\sigma} A+\left(A^{\prime}-A\right)$. Therefore,

$$
M \xrightarrow{t} M+\left(A^{\prime}-A\right) \xrightarrow{\sigma} A^{\prime} \xrightarrow{\sigma^{\prime}} M^{\prime}
$$

(b) False. Consider the following Petri net:

We have $0 \xrightarrow{s t} 1$ and $W(p, t)=W(t, p)$, yet $t s$ cannot be fired from 0 .
(c) True. The proof is symmetric to (a).
(d) False. Consider the following Petri net:

We have $1 \xrightarrow{t s} 0$ and $W(t, p)=W(p, t)$, yet $t s$ cannot be fired from 1 .

Solution 2.3

(a) We define $\mathcal{N}^{\prime}=\left(S^{\prime}, T^{\prime}, F^{\prime}\right)$ as:

$$
\begin{aligned}
& S^{\prime}=S \cup\left\{q^{\prime}: q \in P \text { s.t. } K(q) \neq \infty\right\} \\
& T^{\prime}=T \\
& F^{\prime}=F \cup\left\{\left(q^{\prime}, t\right):(t, q) \in F^{\prime}, K(q) \neq \infty\right\} \cup\left\{\left(t, q^{\prime}\right):(q, t) \in F^{\prime}, K(q) \neq \infty\right\}
\end{aligned}
$$

Marking L is defined as the marking such that $L(q)=M(q)$ for every $q \in Q$ and $L\left(q^{\prime}\right)=K(q)-M(q)$ for every $q \in Q$ such that $K(q) \neq \infty$. Marking L^{\prime} is defined similarly.
The resulting net is:

and the resulting markings are:

$$
\begin{aligned}
L & =\left\{2 \cdot q_{1}, 3 \cdot q_{1}^{\prime}, q_{2}, 3 \cdot q_{3}^{\prime}\right\} \\
L^{\prime} & =\left\{q_{1}, 4 \cdot q_{1}^{\prime}, 2 \cdot q_{2}, q_{3}, 2 \cdot q_{3}^{\prime}\right\}
\end{aligned}
$$

(b) Let us first give a net for the given net with weighted arcs:

where the markings are:

$$
\begin{aligned}
L & =\left\{q_{2}, r\right\}, \\
L^{\prime} & =\left\{q_{1}, 2 \cdot q_{2}, q_{3}, r\right\} .
\end{aligned}
$$

More generally, a transition such as:

can be converted into the following gadget:

where s^{-1} denotes the inverse transition of s, i.e., $\left(p, s^{-1}\right) \in F \Longleftrightarrow(s, p) \in F$ and $\left(s^{-1}, p\right) \in F \Longleftrightarrow$ $(p, s) \in F$ for every place p. Note that place r must be shared by all gadgets.

Solution 2.4

(a) The following is a coverability graph where nodes are labeled with respect to the total order $p_{1}<p_{2}<$ $p_{3}<p_{4}$:

(b) It is not bounded since some markings of the graph contain ω. Places p_{1}, p_{2} and p_{3} are bounded because no marking of the graph contains an ω in the three first components.
\star This can also be tested with LoLA as follows:

```
> lola pn_2-4.lola -f "AG (p1 < oo)" --search=cover
lola: result: yes
lola: The net satisfies the given formula.
```

```
> lola pn_2-4.lola -f "AG (p2 < oo)" --search=cover
lola: result: yes
lola: The net satisfies the given formula.
```

```
> lola pn_2-4.lola -f "AG (p3 < oo)" --search=cover
lola: result: yes
```

lola: The net satisfies the given formula.
> lola pn_2-4.lola -f "AG (p4 < oo)" --search=cover
lola: result: no
lola: The net does not satisfy the given formula.
(c) $\left\{M \in \mathbb{N}^{P}: M\left(p_{1}\right)+M\left(p_{2}\right)+M\left(p_{3}\right)=1\right\}$.
(d) No, it does not terminate. A Petri net terminates if and only if its coverability graph contains a cycle or at least one node with an ω. The above coverability graph contains both. In particular, $t_{3} t_{1}\left(t_{2} t_{4}\right)^{\omega}$ is an infinite firing sequence.

