# Petri nets — Homework 2

Due 08.05.2018

#### Exercise 2.1

- (a) Give a net  $\mathcal{N}$  and two markings M and M' such that  $M \leq M'$ ,  $(\mathcal{N}, M)$  is bounded, and  $(\mathcal{N}, M')$  is not bounded.
- (b) Give a net  $\mathcal{N}$  and two markings M and M' such that  $M \leq M'$ ,  $(\mathcal{N}, M)$  is deadlock-free, and  $(\mathcal{N}, M')$  is not deadlock-free.
- (c) Consider the following net  $\mathcal{N}$  (with weighted arcs):



Give markings M and M' such that  $M \leq M'$ ,  $(\mathcal{N}, M)$  is live, and  $(\mathcal{N}, M')$  is deadlock-free but not live.

#### Exercise 2.2

Let  $\mathcal{N} = (P, T, W)$  be a net with weighted arcs. Let  $M, M' \in \mathbb{N}^P$ ,  $\sigma, \sigma' \in T^*$  and  $t \in T$  be such that  $M \xrightarrow{\sigma t \sigma'} M'$ . Prove or disprove the following statements:

- (a) if t does not consume any token, i.e W(p,t)=0 for every  $p\in P$ , then  $M\xrightarrow{t\sigma\sigma'}M'$ .
- (b) if t consumes no more tokens than it produces, i.e  $W(p,t) \leq W(t,p)$  for every  $p \in P$ , then  $M \xrightarrow{t\sigma\sigma'} M'$ .
- (c) if t does not produce any token, i.e. W(t,p)=0 for every  $p\in P$ , then  $M\xrightarrow{\sigma\sigma't}M'$ .
- (d) if t produces no more tokens than it consumes, i.e.  $W(t,p) \leq W(p,t)$  for every  $p \in P$ , then  $M \xrightarrow{\sigma\sigma't} M'$ .

### Exercise 2.3

Show that nets with place capacities and nets with weighted arcs are equivalent to standard nets. More precisely, sketch two algorithms solving the two following problems. The worst-case running time of your algorithms should be exponential.

(a) INPUT: a net with place capacities  $\mathcal{N}=(S,T,F,K)$ , and two markings M and M'.

OUTPUT: a net  $\mathcal{N}' = (S', T', F')$ , and two markings L and L', such that  $M \stackrel{*}{\to} M'$  in  $\mathcal{N}$ 

if and only if  $L \xrightarrow{*} L'$  in  $\mathcal{N}'$ .

Apply your algorithm on the net below to the left with  $M = \{2 \cdot q_1, q_2\}$  and  $M' = \{2 \cdot q_1, q_3\}$ .

(b) Input: a net with weighted arcs  $\mathcal{N}=(S,T,W)$  and a markings M and M'.

OUTPUT: a net  $\mathcal{N}' = (S', T', F')$ , and two markings L and L', such that  $M \xrightarrow{*} M'$  in  $\mathcal{N}$ 

if and only if  $L \xrightarrow{*} L'$  in  $\mathcal{N}'$ .

Apply your algorithm on the net below to the right with  $M = \{q_2\}$  and  $M' = \{q_1, 2 \cdot q_2, q_3\}$ .





## Exercise 2.4

Consider the following net  $\mathcal{N} = (P, T, F)$ :



- (a) Draw a coverability graph for  $(\mathcal{N}, \{p_1\})$ .
- (b) Is  $(\mathcal{N}, \{p_1\})$  bounded? If so, why? If not, which places are bounded?

- (c) Describe the set of markings coverable from  $\{p_1\}$ .
- (d) We say that a Petri net  $(\mathcal{N}, M_0)$  terminates if all its firing sequences are finite. Does  $(\mathcal{N}, \{p_1\})$  terminate? Justify your answer.