Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

Petri nets — Homework 7

Due 26.07.2017

Exercise 7.1

Consider the following free-choice system (\mathcal{N}, M_0) :

- (a) Give all minimal proper siphons of (\mathcal{N}, M_0) .
- (b) Use (a) to say whether (\mathcal{N}, M_0) is live or not.

Exercise 7.2

- (a) Exhibit a non live system (\mathcal{N}, M_0) for which every proper siphon contains a trap marked at M_0 .
- (b) Exhibit a live system (\mathcal{N}, M_0) with a proper siphon that does not contain a trap marked at M_0 . [Hint:
- (c) A system (\mathcal{N}, M_0) is monotonously live if (\mathcal{N}, M) is live for every marking $M \ge M_0$. In exercise #2.1, we have seen that Petri nets are generally not monotonously live. Show that live free-choice systems are monotonously live.

Exercise 7.3

Let (\mathcal{N}, M_0) be a bounded and strongly connected free-choice system which is deadlock-free, where $\mathcal{N} = (P, T, F)$. For every $M \in \mathbb{N}^P$, let d(M) be the number of transitions dead at M. Let $K \in \mathbb{N}^P$ be such that $d(K) = \max\{d(M) : M_0 \xrightarrow{*} M\}$.

- (a) Let $u \in T$ be a transition not dead at K. Show that there exists an infinite firing sequence $\sigma \in T^{\omega}$ enabled at K and containing infinitely many occurrences of u. [Hint:
- (b) Let $u, v \in T$ be such that u is not dead at K and $v \in (u^{\bullet})^{\bullet}$. Show that v is not dead at K. [Hint:

- (c) Show that there exists a path $\gamma \in (T \cup P)^*$ of \mathcal{N} such that γ contains all transitions of T and γ starts with a transition enabled at K.
- (d) Use (b) and (c) to show that d(K) = 0, and hence that (\mathcal{N}, M_0) is live.

Exercise 7.4

Exercise #7.1 shows the following theorem:

Every bounded, strongly connected and free-choice system is live if and only if it is deadlock-free.

Show that this theorem does not hold anymore if we remove any of its three conditions. More precisely,

- (a) Exhibit a bounded and free-choice system which is deadlock-free, but not live;
- (b) Exhibit a bounded and strongly connected system which is deadlock-free, but not live;
- (c) \bigstar Exhibit a strongly connected and free-choice system which is deadlock-free, but not live. [Hint:

Solution 7.1

(a) We claim that the system has two minimal proper siphons: $\{p_0\}$ and $\{p_2, p_3\}$.

Let us show the claim. By inspecting $\bullet p$ and p^{\bullet} for every place p, we find a single siphon of size one: $\{p_0\}$. Moreover, we have $\bullet \{p_2, p_3\} = \{t_2, t_3, t_4\} = \{p_2, p_3\}^{\bullet}$. Now, note that $t_0 \in \bullet p_1$ and $\bullet t_0 = \{p_0\}$. Therefore, any siphon containing p_1 must also contain p_0 . Similarly, any siphon containing p_4 must also contain p_0 . Thus, no minimal siphon contains p_1 or p_4 , and we are done.

(b) The system is not live. By Commoner's Theorem, the system is live if and only if every minimal proper siphon contains a trap marked at M_0 . The minimal siphon $\{p_2, p_3\}$ is also a trap and it is marked at M_0 . However, the minimal siphon $\{p_0\}$ is not a trap and hence it does not contain a marked trap.

Solution 7.2

(a) The following system is not live since t_3 is dead. The only proper siphon of the system is $Q = \{p_1, p_2\}$. The set Q is also a trap which is marked at M_0 .

(b) The following system is live, however the siphon $\{p_0, p_1, p_2\}$ contains no trap marked at M_0 since the net does not contain any proper trap.

(c) Let (\mathcal{N}, M_0) be a live free-choice system. By Commoner's Liveness Theorem, every proper siphon of \mathcal{N} contains a trap marked at M_0 . Let $M \ge M_0$. Each trap marked at M_0 is also marked at M. Therefore, every proper siphon of \mathcal{N} contains a trap marked at M. By Commoner's Liveness Theorem, (\mathcal{N}, M) is live.

Solution 7.3

(a) Since u is not dead at K, there exist $\sigma_1 \in T^*$ and $L_1 \in \mathbb{N}^P$ such that $K \xrightarrow{\sigma_1} L_1$ and u is enabled at L_1 . Let $L'_1 \in \mathbb{N}^P$ be such that $L_1 \xrightarrow{u} L'_1$. By maximality of d(K), we have $d(L'_1) \leq d(K)$. Moreover, every transition dead at K is also dead at L'_1 , and hence the transitions dead at K and L'_1 are the same. Therefore, u is not dead at L'_1 . This implies that there exist $\sigma_2 \in T^*$ and $L_2 \in \mathbb{N}^P$ such that $L'_1 \xrightarrow{\sigma_2} L_2$ and u is enabled at L_2 . By repeating this argument, we obtain an infinite firing sequence $\sigma = \sigma_1 u \sigma_2 u \cdots$ enabled at K and containing infinitely many occurrences of u.

- (b) By (a), there exists an infinite firing sequence σ ∈ T^ω which is enabled at K and such that σ contains infinitely many occurrences of u. Since v ∈ (u[•])[•], there exists p ∈ P such that (u, p), (p, v) ∈ F. Since (N, M₀) is bounded and u produces a token in p, σ must contain infinitely many occurrences of a transition w such that p ∈ •w. Indeed, otherwise p would be unbounded. In particular, this implies that w is not dead at K. Since N is free-choice, v is enabled at the same markings as w. Therefore, v is not dead at K.
- (c) Since (\mathcal{N}, M_0) is deadlock-free and K is reachable from M_0 , there exists a transition t enabled at K. Moreover, since \mathcal{N} is strongly connected, there exists a path starting in t that goes through all nodes of \mathcal{N} .
- (d) By (c), there exists a path γ that contains all transitions of \mathcal{N} and whose first transition is enabled at K. Let $\gamma = t_1 p_1 t_2 \cdots p_{n-1} t_n$. We claim that, for every $1 \leq i \leq n$, t_i is not dead at K. It follows from this claim that d(K) = 0, and hence, by maximality of d(K), that (\mathcal{N}, M_0) is live.

We prove the claim by induction on *i*. The base case follows immediately. Let i > 1 and assume that the claim holds for t_{i-1} . We have $(t_{i-1}, p_{i-1}), (p_{i-1}, t_i) \in F$. Therefore, $t_i \in (t_{i-1}^{\bullet})^{\bullet}$. By induction hypothesis, t_{i-1} is not dead at K and hence, by (b), t_i is also not dead.

Solution 7.4

(a)

