Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

Petri nets — Homework 7

Due 26.07.2017

Exercise 7.1

Consider the following free-choice system (\mathcal{N}, M_0) :

- (a) Give all minimal proper siphons of (\mathcal{N}, M_0) .
- (b) Use (a) to say whether (\mathcal{N}, M_0) is live or not.

Exercise 7.2

- (a) Exhibit a non live system (\mathcal{N}, M_0) for which every proper siphon contains a trap marked at M_0 .
- (b) Exhibit a live system (\mathcal{N}, M_0) with a proper siphon that does not contain a trap marked at M_0 . [Hint:
- (c) A system (\mathcal{N}, M_0) is monotonously live if (\mathcal{N}, M) is live for every marking $M \ge M_0$. In exercise #2.1, we have seen that Petri nets are generally not monotonously live. Show that live free-choice systems are monotonously live.

Exercise 7.3

Let (\mathcal{N}, M_0) be a bounded and strongly connected free-choice system which is deadlock-free, where $\mathcal{N} = (P, T, F)$. For every $M \in \mathbb{N}^P$, let d(M) be the number of transitions dead at M. Let $K \in \mathbb{N}^P$ be such that $d(K) = \max\{d(M) : M_0 \xrightarrow{*} M\}$.

- (a) Let $u \in T$ be a transition not dead at K. Show that there exists an infinite firing sequence $\sigma \in T^{\omega}$ enabled at K and containing infinitely many occurrences of u. [Hint:
- (b) Let $u, v \in T$ be such that u is not dead at K and $v \in (u^{\bullet})^{\bullet}$. Show that v is not dead at K. [Hint:

- (c) Show that there exists a path $\gamma \in (T \cup P)^*$ of \mathcal{N} such that γ contains all transitions of T and γ starts with a transition enabled at K.
- (d) Use (b) and (c) to show that d(K) = 0, and hence that (\mathcal{N}, M_0) is live.

Exercise 7.4

Exercise #7.1 shows the following theorem:

Every bounded, strongly connected and free-choice system is live if and only if it is deadlock-free.

Show that this theorem does not hold anymore if we remove any of its three conditions. More precisely,

- (a) Exhibit a bounded and free-choice system which is deadlock-free, but not live;
- (b) Exhibit a bounded and strongly connected system which is deadlock-free, but not live;
- (c) \bigstar Exhibit a strongly connected and free-choice system which is deadlock-free, but not live. [Hint: