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Exercise 7.1

Consider the following free-choice system (N ,M0):
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(a) Give all minimal proper siphons of (N ,M0).

(b) Use (a) to say whether (N ,M0) is live or not.

Exercise 7.2

(a) Exhibit a non live system (N ,M0) for which every proper siphon contains a trap marked at M0.

(b) Exhibit a live system (N ,M0) with a proper siphon that does not contain a trap marked at M0. [Hint:
There exists one with 3 places and 3 transitions.]

(c) A system (N ,M0) is monotonously live if (N ,M) is live for every marking M ≥ M0. In exercise #2.1,
we have seen that Petri nets are generally not monotonously live. Show that live free-choice systems are
monotonously live.

Exercise 7.3

Let (N ,M0) be a bounded and strongly connected free-choice system which is deadlock-free, where N =
(P, T, F ). For every M ∈ NP , let d(M) be the number of transitions dead at M . Let K ∈ NP be such that

d(K) = max{d(M) : M0
∗−→M}.

(a) Let u ∈ T be a transition not dead at K. Show that there exists an infinite firing sequence σ ∈ Tω enabled
at K and containing infinitely many occurrences of u. [Hint: Use the fact that d(K) is maximal.]

(b) Let u, v ∈ T be such that u is not dead at K and v ∈ (u•)•. Show that v is not dead at K. [Hint: Use (a).]



(c) Show that there exists a path γ ∈ (T ∪ P )∗ of N such that γ contains all transitions of T and γ starts
with a transition enabled at K.

(d) Use (b) and (c) to show that d(K) = 0, and hence that (N ,M0) is live.

Exercise 7.4

Exercise #7.1 shows the following theorem:

Every bounded, strongly connected and free-choice system is live if and only if it is deadlock-free.

Show that this theorem does not hold anymore if we remove any of its three conditions. More precisely,

(a) Exhibit a bounded and free-choice system which is deadlock-free, but not live;

(b) Exhibit a bounded and strongly connected system which is deadlock-free, but not live;

(c) F Exhibit a strongly connected and free-choice system which is deadlock-free, but not live. [Hint: There
exists one with 3 places and 3 transitions.]


