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Exercise 6.1

(a) Give an S-system (N ,M0) that is 1-bounded and such that |M0| > 1.

(b) Give a strongly connected T -system (N ,M0) which is not live and such that M0 6= 0.

(c) Give a bounded T -system (N ,M0) which is not strongly connected and such that M0 6= 0.

(d) Let (N ,M0) be a T -system. Show that if (N ,M0) is strongly connected and live, then it is bounded.

(e) F Reprove (d), but this time without assuming that (N ,M0) is live.

Exercise 6.2

(a) Let N = (P, T, F ) be a Petri net, and let s, t ∈ T be such that •s ∩ t• = ∅. Show that if M
ts−→M ′, then

M
st−→M ′.

(b) Let N = (P, T, F ) be a Petri net which is not strongly connected. Show that P ∪ T can be partitioned
into two disjoint sets U, V ⊆ P ∪ T such that F ∩ (V × U) = ∅.

(c) Let U and V be a partition as in (b). Show that if M
σ−→ M ′, then there exist σU ∈ (T ∩ U)∗ and

σV ∈ (T ∩ V )∗ such that σ = σUσV and M
σUσV−−−−→M ′.

(d) Let (N ,M0) be live and bounded. Use (a), (b) and (c) to show that N is strongly connected.

Exercise 6.3

(a) Show that the problem of determining whether a T -system is not live belongs to NP.

(b) Give a polynomial time algorithm for deciding liveness of T -systems.

(c) Test whether the following T -system is live by using your previous algorithm:

p1 p2 p3

p4p5p6

p7p8
p9



Solution 6.1

(a)

(b)

(c)

(d) Let N = (P, T, F ). Let b = M0(P ). We show that every place is b-bounded. Let p ∈ P . Since N is
strongly connected, p lies on some circuit γ. Note that M0(γ) ≤ b and that (N ,M0) is live. Therefore, by
Theorem 5.2.4, p is b-bounded.

(e) Let N = (P, T, F ). For the sake of contradiction, assume (N ,M0) is unbounded. Since (N ,M0) is
unbounded, there exist M,M ′ ∈ NP , σ ∈ T+ and p ∈ P such that

M0
∗−→M

σ−→M ′, M ′ ≥M and M ′(p) > M(p). (1)

Let •p = {s} and p• = {t}. Since N is strongly connected, there exists a path π from t to s. Therefore, p
lies on the circuit γ = (p, t)π(s, p).

Let n = M0(γ). By (1), we may fire σ arbitrarily many times from M , thus increasing the amount of
tokens in p by at least one each time. Therefore, there exists M ′′ ∈ NP such that

M
σn+1

−−−→M ′′ and M ′′(p) > n.

By the fundamental property of T -systems, M ′′(γ) = M(γ) = n, which is a contradiction since M ′′(γ) ≥
M ′′(p) > n.

Solution 6.2

(a) Let X ∈ NP be such that M
t−→ X

s−→ M ′. For the sake of contradiction, suppose s is not enabled in M .
There exists p ∈ P such that p ∈ •s and M(p) = 0. Since s is enabled in X, we have X(p) > 0. Therefore,
it must be the case that p ∈ t•. This implies that p ∈ •s ∩ t• which is a contradiction. Thus, s is enabled
in M and M

s−→ Y for some marking Y ∈ NP .



Let us now show that t is enabled in Y . Let q ∈ •t. We must show that Y (q) > 0.

Case 1: q 6∈ •s. If q 6∈ •s, then Y (q) ≥M(q) > 0.

Case 2: q ∈ •s. If q ∈ •s, then

Y (q) = M(q)− 1. (2)

Since s is enabled in X, we have X(q) > 0. Moreover, q 6∈ t• since •s ∩ t• = ∅. This implies that
M(q) > X(q), and hence M(q) ≥ 2. By (2), we derive Y (q) ≥ 1.

(b) Since N is not strongly connected, there exist u, v ∈ P ∪ T such that there is no path from v to u. Let

U = {x ∈ P ∪ T : there is a path from x to u},
V = (P ∪ T ) \ U.

Note that both sets are non empty since u ∈ U and v ∈ V . Moreover, U ∩ V = ∅ and U ∪ V = P ∪ T by
definition.

Let us show that F ∩ (V × U) = ∅. Assume there exists e ∈ F ∩ (V × U). There exist x ∈ U and y ∈ V
such that (y, x) ∈ F . Since x ∈ U , there exists a path σ from x to u. Therefore, (y, x)σ is a path from y
to u. This implies that y ∈ U which is a contradiction.

(c) Let U ′ = T ∩ U and V ′ = T ∩ V . Let us first show that •(U ′) ∩ (V ′)• = ∅. For the sake of contradiction,
assume there exist s ∈ V ′, t ∈ U ′ and q ∈ P such that q ∈ s• and q ∈ •t. We have (s, q) ∈ F and
(q, t) ∈ F . If q ∈ U , then by (b) and (s, q) ∈ F , we obtain a contradiction. Similarly, if q ∈ V , then
(q, t) ∈ F yields a contradiction.

We now prove the claim by induction of |σ|. If |σ| = 0, it follows trivially. Assume that |σ| > 0 and that
the claim holds for firing sequences of length |σ| − 1. There exist σ′ ∈ T ∗, s ∈ T and Y ∈ NP such that
σ = σ′s and

M
σ′

−→ X
s−→M ′.

By induction hypothesis, there exists πU ∈ (U ′)∗ and πV ∈ (V ′)∗ such that M
πUπV−−−−→ X. If s ∈ V ′

or |πV | = 0, then we are done. Otherwise, let π′V ∈ (V ′)∗ and t ∈ V ′ be such that πV = π′V t. Since
•(U ′) ∩ (V ′)• = ∅, we can apply (a) and obtain

M
πUπ

′
V s−−−−→ Y

t−→M ′

for some Y ∈ NP . By induction hypothesis, there exist γU ∈ (U ′)∗ and γV ∈ (V ′)∗ such that

M
γUγV−−−→ Y.

Let σU = γU and σV = γV t. We are done since σU ∈ (U ′)∗, σV ∈ (V ′)∗ and M
σUσV−−−−→M ′.

(d) Let N = (P, T, F ). For the sake of contradiction, assume N is not strongly connected. By (b), there
exists a partition U, V of P ∪ T such that F ∩ (V × U) = ∅. Since N is connected, there exist u ∈ U and
v ∈ V such that (u, v) ∈ F . Let b ∈ N be such that (N ,M0) is b-bounded. Since (N ,M0) is live, there

exist σ ∈ T ∗ and M ∈ NP such that M0
σ−→M and (u, v) is taken b+1 times. By (c), there exist σU ∈ U∗

and σV ∈ V ∗ such that M0
σUσV−−−−→M . Let X ∈ NP be such that M0

σU−−→ X
σV−−→M .

Case 1: u ∈ P , v ∈ T . Since F ∩ (V × U) = ∅, there is no transition of V that puts tokens into places of

U . Note that v decreases the amount of token of u by 1. Since X
σV−−→ M , these two observations imply

that X(u) ≥ b+ 1. As X is reachable from M0, this contradicts (N ,M0) being b-bounded.

Case 2: u ∈ T , v ∈ P . Since F ∩ (V ×U) = ∅, there is no transition of U that consumes tokens from places

of V . Note that u increases the amount of token of u by 1. Since M0
σU−−→ X, these two observations imply

that X(u) ≥ b+ 1. This contradicts (N ,M0) being b-bounded.



Solution 6.3

(a) By Theorem 5.2.3, (N ,M0) is not live if and only if M0(γ) = 0 for some circuit γ. Note that every cycle
γ contains a simple cycle γ′. Moreover, if M0(γ) = 0, then M0(γ′) = 0. This implies that,

(N ,M0) is not live ⇐⇒ M0(γ) = 0 for some simple circuit γ.

Therefore, to test whether (N ,M0) is not live, it suffices to test a circuit γ of size at most |P ∪ T | and
check whether M0(γ) = 0.

(b) Since a graph may contain exponentially many simple cycles, we cannot directly use the approach of (a).
Instead, we construct the subnet N ′ obtained from N by removing all places containing tokens. We then
perform depth-first search to test whether N ′ contains a cycle. This procedure can be implemented as
follows:

Input: T -system (N ,M0) where N = (P, T, F )
Output: (N ,M0) live?
while ∃p ∈ P such that ¬visited(p) and M0(p) = 0 do

if has-cycle(p) then return false
return true

has-cycle(p):
visited(p)← true
onstack(p)← true

for q ∈ (p•)• such that M0(q) = 0 do
if onstack(q) then

return true
else if ¬visited(q) then

if has-cycle(q) then return true

onstack(p)← false
return false

(c) We obtain the following subnet:

p1 p2 p3

p4p5

p8
p9

A depth-first search shows that this subnet contains no cycle. Therefore, the system is live.


