Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

Petri nets — Homework 6

Due 12.07.2017

Exercise 6.1

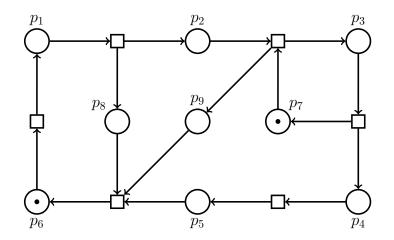
- (a) Give an S-system (\mathcal{N}, M_0) that is 1-bounded and such that $|M_0| > 1$.
- (b) Give a strongly connected T-system (\mathcal{N}, M_0) which is not live and such that $M_0 \neq \mathbf{0}$.
- (c) Give a bounded T-system (\mathcal{N}, M_0) which is not strongly connected and such that $M_0 \neq \mathbf{0}$.
- (d) Let (\mathcal{N}, M_0) be a T-system. Show that if (\mathcal{N}, M_0) is strongly connected and live, then it is bounded.
- (e) \bigstar Reprove (d), but this time without assuming that (\mathcal{N}, M_0) is live.

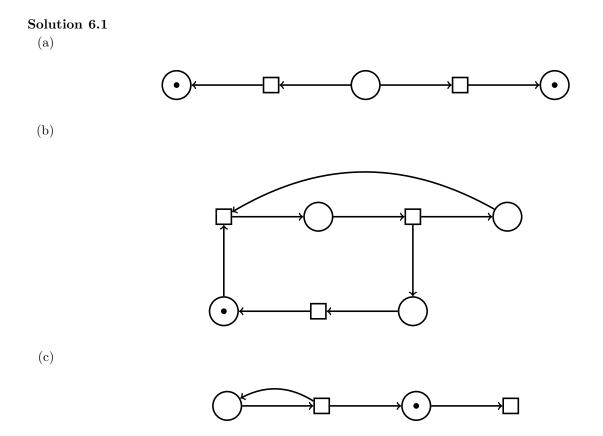
Exercise 6.2

- (a) Let $\mathcal{N} = (P, T, F)$ be a Petri net, and let $s, t \in T$ be such that $\bullet s \cap t^{\bullet} = \emptyset$. Show that if $M \xrightarrow{ts} M'$, then $M \xrightarrow{st} M'$.
- (b) Let $\mathcal{N} = (P, T, F)$ be a Petri net which is not strongly connected. Show that $P \cup T$ can be partitioned into two disjoint sets $U, V \subseteq P \cup T$ such that $F \cap (V \times U) = \emptyset$.
- (c) Let U and V be a partition as in (b). Show that if $M \xrightarrow{\sigma} M'$, then there exist $\sigma_U \in (T \cap U)^*$ and $\sigma_V \in (T \cap V)^*$ such that $\sigma = \sigma_U \sigma_V$ and $M \xrightarrow{\sigma_U \sigma_V} M'$.
- (d) Let (\mathcal{N}, M_0) be live and bounded. Use (a), (b) and (c) to show that \mathcal{N} is strongly connected.

Exercise 6.3

- (a) Show that the problem of determining whether a T-system is not live belongs to NP.
- (b) Give a polynomial time algorithm for deciding liveness of T-systems.
- (c) Test whether the following T-system is live by using your previous algorithm:





- (d) Let $\mathcal{N} = (P, T, F)$. Let $b = M_0(P)$. We show that every place is b-bounded. Let $p \in P$. Since \mathcal{N} is strongly connected, p lies on some circuit γ . Note that $M_0(\gamma) \leq b$ and that (\mathcal{N}, M_0) is live. Therefore, by Theorem 5.2.4, p is b-bounded.
- (e) Let $\mathcal{N} = (P, T, F)$. For the sake of contradiction, assume (\mathcal{N}, M_0) is unbounded. Since (\mathcal{N}, M_0) is unbounded, there exist $M, M' \in \mathbb{N}^P, \sigma \in T^+$ and $p \in P$ such that

$$M_0 \xrightarrow{*} M \xrightarrow{\sigma} M', \ M' \ge M \text{ and } M'(p) > M(p).$$
 (1)

Let $\bullet p = \{s\}$ and $p^{\bullet} = \{t\}$. Since \mathcal{N} is strongly connected, there exists a path π from t to s. Therefore, p lies on the circuit $\gamma = (p, t)\pi(s, p)$.

Let $n = M_0(\gamma)$. By (1), we may fire σ arbitrarily many times from M, thus increasing the amount of tokens in p by at least one each time. Therefore, there exists $M'' \in \mathbb{N}^P$ such that

$$M \xrightarrow{\sigma^{n+1}} M''$$
 and $M''(p) > n$.

By the fundamental property of T-systems, $M''(\gamma) = M(\gamma) = n$, which is a contradiction since $M''(\gamma) \ge M''(p) > n$.

Solution 6.2

(a) Let $X \in \mathbb{N}^P$ be such that $M \xrightarrow{t} X \xrightarrow{s} M'$. For the sake of contradiction, suppose s is not enabled in M. There exists $p \in P$ such that $p \in \bullet s$ and M(p) = 0. Since s is enabled in X, we have X(p) > 0. Therefore, it must be the case that $p \in t^{\bullet}$. This implies that $p \in \bullet s \cap t^{\bullet}$ which is a contradiction. Thus, s is enabled in M and $M \xrightarrow{s} Y$ for some marking $Y \in \mathbb{N}^P$. Let us now show that t is enabled in Y. Let $q \in {}^{\bullet}t$. We must show that Y(q) > 0.

Case 1: $q \notin \bullet s$. If $q \notin \bullet s$, then $Y(q) \ge M(q) > 0$.

Case 2: $q \in \bullet s$. If $q \in \bullet s$, then

$$Y(q) = M(q) - 1.$$
 (2)

Since s is enabled in X, we have X(q) > 0. Moreover, $q \notin t^{\bullet}$ since $\bullet s \cap t^{\bullet} = \emptyset$. This implies that M(q) > X(q), and hence $M(q) \ge 2$. By (2), we derive $Y(q) \ge 1$.

(b) Since \mathcal{N} is not strongly connected, there exist $u, v \in P \cup T$ such that there is no path from v to u. Let

$$U = \{ x \in P \cup T : \text{there is a path from } x \text{ to } u \},\$$
$$V = (P \cup T) \setminus U.$$

Note that both sets are non empty since $u \in U$ and $v \in V$. Moreover, $U \cap V = \emptyset$ and $U \cup V = P \cup T$ by definition.

Let us show that $F \cap (V \times U) = \emptyset$. Assume there exists $e \in F \cap (V \times U)$. There exist $x \in U$ and $y \in V$ such that $(y, x) \in F$. Since $x \in U$, there exists a path σ from x to u. Therefore, $(y, x)\sigma$ is a path from y to u. This implies that $y \in U$ which is a contradiction.

(c) Let $U' = T \cap U$ and $V' = T \cap V$. Let us first show that $\bullet(U') \cap (V')^{\bullet} = \emptyset$. For the sake of contradiction, assume there exist $s \in V'$, $t \in U'$ and $q \in P$ such that $q \in s^{\bullet}$ and $q \in \bullet t$. We have $(s,q) \in F$ and $(q,t) \in F$. If $q \in U$, then by (b) and $(s,q) \in F$, we obtain a contradiction. Similarly, if $q \in V$, then $(q,t) \in F$ yields a contradiction.

We now prove the claim by induction of $|\sigma|$. If $|\sigma| = 0$, it follows trivially. Assume that $|\sigma| > 0$ and that the claim holds for firing sequences of length $|\sigma| - 1$. There exist $\sigma' \in T^*$, $s \in T$ and $Y \in \mathbb{N}^P$ such that $\sigma = \sigma's$ and

$$M \xrightarrow{\sigma'} X \xrightarrow{s} M'.$$

By induction hypothesis, there exists $\pi_U \in (U')^*$ and $\pi_V \in (V')^*$ such that $M \xrightarrow{\pi_U \pi_V} X$. If $s \in V'$ or $|\pi_V| = 0$, then we are done. Otherwise, let $\pi'_V \in (V')^*$ and $t \in V'$ be such that $\pi_V = \pi'_V t$. Since $\bullet(U') \cap (V')^{\bullet} = \emptyset$, we can apply (a) and obtain

$$M \xrightarrow{\pi_U \pi'_V s} Y \xrightarrow{t} M'$$

for some $Y \in \mathbb{N}^P$. By induction hypothesis, there exist $\gamma_U \in (U')^*$ and $\gamma_V \in (V')^*$ such that

 $M \xrightarrow{\gamma_U \gamma_V} Y.$

Let $\sigma_U = \gamma_U$ and $\sigma_V = \gamma_V t$. We are done since $\sigma_U \in (U')^*$, $\sigma_V \in (V')^*$ and $M \xrightarrow{\sigma_U \sigma_V} M'$.

(d) Let $\mathcal{N} = (P, T, F)$. For the sake of contradiction, assume \mathcal{N} is not strongly connected. By (b), there exists a partition U, V of $P \cup T$ such that $F \cap (V \times U) = \emptyset$. Since \mathcal{N} is connected, there exist $u \in U$ and $v \in V$ such that $(u, v) \in F$. Let $b \in \mathbb{N}$ be such that (\mathcal{N}, M_0) is b-bounded. Since (\mathcal{N}, M_0) is live, there exist $\sigma \in T^*$ and $M \in \mathbb{N}^P$ such that $M_0 \xrightarrow{\sigma_U \sigma_V} M$ and (u, v) is taken b + 1 times. By (c), there exist $\sigma_U \in U^*$ and $\sigma_V \in V^*$ such that $M_0 \xrightarrow{\sigma_U \sigma_V} M$. Let $X \in \mathbb{N}^P$ be such that $M_0 \xrightarrow{\sigma_U} M$.

Case 1: $u \in P, v \in T$. Since $F \cap (V \times U) = \emptyset$, there is no transition of V that puts tokens into places of U. Note that v decreases the amount of token of u by 1. Since $X \xrightarrow{\sigma_V} M$, these two observations imply that $X(u) \ge b + 1$. As X is reachable from M_0 , this contradicts (\mathcal{N}, M_0) being b-bounded.

Case 2: $u \in T$, $v \in P$. Since $F \cap (V \times U) = \emptyset$, there is no transition of U that consumes tokens from places of V. Note that u increases the amount of token of u by 1. Since $M_0 \xrightarrow{\sigma_U} X$, these two observations imply that $X(u) \ge b + 1$. This contradicts (\mathcal{N}, M_0) being b-bounded.

Solution 6.3

(a) By Theorem 5.2.3, (\mathcal{N}, M_0) is not live if and only if $M_0(\gamma) = 0$ for some circuit γ . Note that every cycle γ contains a simple cycle γ' . Moreover, if $M_0(\gamma) = 0$, then $M_0(\gamma') = 0$. This implies that,

 (\mathcal{N}, M_0) is not live $\iff M_0(\gamma) = 0$ for some simple circuit γ .

Therefore, to test whether (\mathcal{N}, M_0) is not live, it suffices to test a circuit γ of size at most $|P \cup T|$ and check whether $M_0(\gamma) = 0$.

(b) Since a graph may contain exponentially many simple cycles, we cannot directly use the approach of (a). Instead, we construct the subnet \mathcal{N}' obtained from \mathcal{N} by removing all places containing tokens. We then perform depth-first search to test whether \mathcal{N}' contains a cycle. This procedure can be implemented as follows:

```
Input: T-system (\mathcal{N}, M_0) where \mathcal{N} = (P, T, F)

Output: (\mathcal{N}, M_0) live?

while \exists p \in P such that \negvisited(p) and M_0(p) = 0 do

if has-cycle(p) then return false

return true

has-cycle(p):

visited(p) \leftarrow true

onstack(p) \leftarrow true

for q \in (p^{\bullet})^{\bullet} such that M_0(q) = 0 do

if onstack(q) then

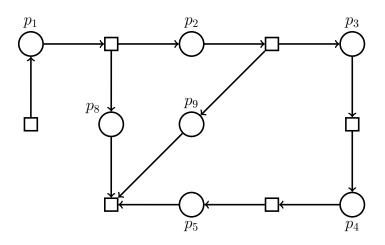
return true

else if \negvisited(q) then

if has-cycle(q) then return true
```

 $onstack(p) \leftarrow false$ return false

(c) We obtain the following subnet:



A depth-first search shows that this subnet contains no cycle. Therefore, the system is live.