Petri nets — Homework 6

Due 12.07.2017

Exercise 6.1

- (a) Give an S-system (\mathcal{N}, M_0) that is 1-bounded and such that $|M_0| > 1$.
- (b) Give a strongly connected T-system (\mathcal{N}, M_0) which is not live and such that $M_0 \neq \mathbf{0}$.
- (c) Give a bounded T-system (\mathcal{N}, M_0) which is not strongly connected and such that $M_0 \neq \mathbf{0}$.
- (d) Let (\mathcal{N}, M_0) be a T-system. Show that if (\mathcal{N}, M_0) is strongly connected and live, then it is bounded.
- (e) \bigstar Reprove (d), but this time without assuming that (\mathcal{N}, M_0) is live.

Exercise 6.2

- (a) Let $\mathcal{N} = (P, T, F)$ be a Petri net, and let $s, t \in T$ be such that ${}^{\bullet}s \cap t^{\bullet} = \emptyset$. Show that if $M \xrightarrow{ts} M'$, then $M \xrightarrow{st} M'$.
- (b) Let $\mathcal{N}=(P,T,F)$ be a Petri net which is not strongly connected. Show that $P\cup T$ can be partitioned into two disjoint sets $U,V\subseteq P\cup T$ such that $F\cap (V\times U)=\emptyset$.
- (c) Let U and V be a partition as in (b). Show that if $M \xrightarrow{\sigma} M'$, then there exist $\sigma_U \in (T \cap U)^*$ and $\sigma_V \in (T \cap V)^*$ such that $\sigma = \sigma_U \sigma_V$ and $M \xrightarrow{\sigma_U \sigma_V} M'$.
- (d) Let (\mathcal{N}, M_0) be live and bounded. Use (a), (b) and (c) to show that \mathcal{N} is strongly connected.

Exercise 6.3

- (a) Show that the problem of determining whether a T-system is not live belongs to NP.
- (b) Give a polynomial time algorithm for deciding liveness of T-systems.
- (c) Test whether the following T-system is live by using your previous algorithm:

