Petri nets - Homework 4

Due 14.06.2017

Exercise 4.1

(a) Show that

$$
X=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{N}^{3}:\left(x_{1}+3 \leq x_{2} \leq x_{3}+1\right) \vee\left(x_{2}=2 x_{1}+x_{3}+5\right)\right\}
$$

is semilinear by exhibiting its representation as a finite set of roots and periods.
(b) Give a Petri net whose reachability set equals X up to a projection. More precisely, give a Petri net (with weights) $\mathcal{N}=(P, T, W)$ such that $\left\{p_{\text {init }}, p_{1}, p_{2}, p_{3}\right\} \subseteq P$ and

$$
\left\{p_{\text {init }}\right\} \xrightarrow{*} M \text { and } M\left(p_{\text {init }}\right)=0 \Longleftrightarrow\left(M\left(p_{1}\right), M\left(p_{2}\right), M\left(p_{3}\right)\right) \in X .
$$

Exercise 4.2

Consider the following Petri net (with weights) \mathcal{N} :

(a) Build the incidence matrix of \mathcal{N}.
(b) Let $M_{0}=\left\{p_{1}, p_{1}\right\}$. Try to determine whether

$$
\begin{aligned}
& M_{0} \xrightarrow{*}\left\{p_{1}, p_{1}, p_{1}, p_{4}\right\}, \\
& M_{0} \xrightarrow{\rightarrow}\left\{p_{1}, p_{1}, p_{1}, p_{1}, p_{2}\right\}, \\
& M_{0} \xrightarrow{*}\left\{p_{1}, p_{2}, p_{5}\right\},
\end{aligned}
$$

by solving the marking equation.
(c) Does $\left\{p_{1}, p_{5}\right\} \xrightarrow{*}\left\{p_{2}, p_{2}, p_{2}, p_{4}\right\}$? Prove your answer.

Exercise 4.3

Consider the following Petri net $\mathcal{N}=(P, T, F)$:

(a) Give a basis of the vector space of S-invariants of \mathcal{N}. [Hint:
(b) Let $M=\left\{p_{1}, p_{2}, p_{4}, p_{4}\right\}$ and $M^{\prime}=\left\{p_{1}, p_{3}, p_{5}\right\}$. Using (a), can you tell whether (\mathcal{N}, M) and $\left(\mathcal{N}, M^{\prime}\right)$ are bounded? live?

