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Petri nets — Homework 2
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Exercise 2.1
(a) Give a Petri net A/ and two markings M and M’ such that M < M’, (N, M) is bounded, and (N, M') is
not bounded.

(b) Give a Petri net N and two markings M and M’ such that M < M’, (M, M) is deadlock-free, and (N, M)
is not deadlock-free.

(c) Consider the following Petri net A/ (with weighted arcs):

p q

Give markings M and M’ such that M < M’ (N, M) is live, and (N, M’) is deadlock-free but not live.

Exercise 2.2
Let N = (P,T,W) be a Petri net with weighted arcs. Let M, M’ € N¥ o,0' € T* and t € T be such that

’
oto

M —— M’. Prove or disprove the following statements:

(a) if ¢ does not consume any token, i.e W(p,t) = 0 for every p € P, then M 2% M'.

too’

(b) if ¢ consumes no more tokens than it produces, i.e W(p,t) < W(t,p) for every p € P, then M —— M’.

(c) if t does not produce any token, i.e. W (t,p) = 0 for every p € P, then M ZZ% M.

oo't

(d) if ¢ produces no more tokens than it consumes, i.e. W(t,p) < W(p,t) for every p € P, then M — M’.

Exercise 2.3

(a) Recall that 3-SAT is the problem of determining the satisfiabillity of a Boolean formula, in conjunctive
normal form, whose clauses have at most three literals. It is well-known that 3-SAT is NP-complete.
Give a polynomial time reduction from 3-SAT to Petri net coverability. You can simply illustrate your
reduction for the formula p(x1,xo, 3, 24) = (1 V a2 V 24) A (mx1 V 23 V —24) A (e V mx3 V —24) by
extending the following partial Petri net in such a way that ¢ is satisfiable if and only if {q} is coverable:
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(b) Adapt your previous reduction to boundedness instead of coverability.

(c) % Give a polynomial time reduction from coverability to reachability. [Hint:

(d) Y Prove that the reduction you gave in (c) is correct. [Hint: ]

Exercise 2.4
Consider the following Petri net N' = (P, T, F):

t1 p3

(a) Draw a coverability graph for (N, {p1}).
(b) Is (N, {p1}) bounded? If so, why? If not, which places are bounded?

(c) Describe the set of markings coverable from {p; }.



Exercise 2.5

The algorithm COVERABILITY-GRAPH does not specify how the coverability graph should be traversed during
its construction. Show that different traversal strategies can lead to different coverability graphs. More precisely,
exhibit a marking M and two different coverability graphs for (N, M), where A is the following Petri net:
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Solution 2.1

(a) The following Petri net is bounded from the empty marking since its reachability set is empty. However,
it is not bounded from {p} since repetitively firing ¢ increases the number of tokens in gq.

p " q p ¢ q
(b) The following Petri net is deadlock-free from {p} since s is always enabled. However, it is not deadlock-free
from {p,q} since {p,q} = {r} and {r} is dead.
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(¢) N is live from M = {q, q, ¢}, since the reachability graph of (N, M) is strongly connected and it enables
all transitions:

q
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N is deadlock-free from M’, since each marking of the reachability graph enables a transition. However,
N is not live from M’ since the bottom strongly connected component colored in blue only enables 7.

Solution 2.2

(a) True. Let A, A’ € N¥ be such that M & A NN V) Since W (p,t) = 0 for every p € P, t is
enabled at any marking. In particular, A’ — A > 0. Thus, M LM+ (A" — A) and, by monotonicity,
M+ (A —A) 5 A+ (A" — A). Therefore,

MY M4 (A —A) T AT
(b) False. Consider the following Petri net:
p

et

We have 0 <% 1 and W(p,t) = W(t,p), yet ts cannot be fired from 0.



(¢) True. The proof is symmetric to (a).

(d) False. Consider the following Petri net:

t : :p S
We have 1 2 0 and W(t,p) = W(p,t), yet ts cannot be fired from 1.

Solution 2.3

(a)




from p:

O

original Petri net transformed Petri net
More formally, given a Petri net with weighted arcs N' = (P, T, W), we build the Petri net N' = (P, T, W)
where
T'=TU{s,:p€ P},

Wi(t,p) ifteT,
0 otherwise.

W'(t,p) = {

Wi(p,t) ifteT,
W'(p,t) =< —1 ift = s,

0 otherwise.

We claim that for every M, M’ € N¥ M’ is coverable in (N, M) if and only if M is reachable in (N”, M).



(d) % We prove the above claim. Let M, M’ € N
=) Suppose that M’ is coverable in (N, M). There exist M” € N and ¢ € T* such that M" > M’
and M < M” in N. This implies that M < M"” in N’. Since M"” > M', we have M” = M’ in N” by
decreasing the number of tokens accordingly. Therefore, M = M"” = M’ in N”.

<) Suppose that M’ is reachable in (N, M). There exists o € (T')* such that M ~ M’. By definition
of NV, for every t € 7'\ T and p € P, we have W (t,p) = 0. Thus, by #2.1(c), all transitions of 7"\ T
occurring in ¢ can be moved to the end. More formally, there exists 7 € T*, 7/ € (T’ \ T)* and M" € N*
such that o = 77’ and

M I M7 M
Since 7' does not produce any token, we have M” > M’. Moreover, M Ts M" is a firing sequence of N
since € T*. Therefore, M" is coverable in (N, M). O

Solution 2.4
(a) The following is a coverability graph where nodes are labeled with respect to the total order p; < ps <
p3 < pa:

(b) It is not bounded since some markings of the graph contain w. Places pi, p2 and p3 are bounded because
no marking of the graph contains an w in the three first components.

Y This can also be tested with LoLA as follows:

> lola pn_2-4.lola -f "AG (pl < o0o)" --search=cover
lola: result: yes
lola: The net satisfies the given formula.

> lola pn_2-4.lola -f "AG (p2 < o00)" --search=cover
lola: result: yes
lola: The net satisfies the given formula.

> lola pn_2-4.lola -f "AG (p3 < o00)" --search=cover
lola: result: yes
lola: The net satisfies the given formula.

> lola pn_2-4.lola -f "AG (p4 < o0o0)" --search=cover
lola: result: no
lola: The net does not satisfy the given formula.

(c) {M e NP : M(p1) + M(p2) + M(ps) = 1}.



Solution 2.5

Let M = {p1}. We exhibit two coverability graphs for (N, M), where nodes are labeled with respect to the
total order p; < pa. We construct the first coverability graph by first exploring the path totstit;:

to
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For the second coverability graph, we first explore the path totqts:

to
1,0 0,1
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Note that the subprocedure ADDOMEGAS generates (w,w) after exploring ¢ot1t3 because, at this point, both
(1,0) and (0, 1) are “ancestors” of the current node labeled by (1,1).



