Petri nets - Homework 2

Due 17.05.2017

Exercise 2.1

(a) Give a Petri net \mathcal{N} and two markings M and M^{\prime} such that $M \leq M^{\prime},(\mathcal{N}, M)$ is bounded, and $\left(\mathcal{N}, M^{\prime}\right)$ is not bounded.
(b) Give a Petri net \mathcal{N} and two markings M and M^{\prime} such that $M \leq M^{\prime},(\mathcal{N}, M)$ is deadlock-free, and $\left(\mathcal{N}, M^{\prime}\right)$ is not deadlock-free.
(c) Consider the following Petri net \mathcal{N} (with weighted arcs):

Give markings M and M^{\prime} such that $M \leq M^{\prime},(\mathcal{N}, M)$ is live, and $\left(\mathcal{N}, M^{\prime}\right)$ is deadlock-free but not live.

Exercise 2.2

Let $\mathcal{N}=(P, T, W)$ be a Petri net with weighted arcs. Let $M, M^{\prime} \in \mathbb{N}^{P}, \sigma, \sigma^{\prime} \in T^{*}$ and $t \in T$ be such that $M \xrightarrow{\sigma t \sigma^{\prime}} M^{\prime}$. Prove or disprove the following statements:
(a) if t does not consume any token, i.e $W(p, t)=0$ for every $p \in P$, then $M \xrightarrow{t \sigma \sigma^{\prime}} M^{\prime}$.
(b) if t consumes no more tokens than it produces, i.e $W(p, t) \leq W(t, p)$ for every $p \in P$, then $M \xrightarrow{t \sigma \sigma^{\prime}} M^{\prime}$.
(c) if t does not produce any token, i.e. $W(t, p)=0$ for every $p \in P$, then $M \xrightarrow{\sigma \sigma^{\prime} t} M^{\prime}$.
(d) if t produces no more tokens than it consumes, i.e. $W(t, p) \leq W(p, t)$ for every $p \in P$, then $M \xrightarrow{\sigma \sigma^{\prime} t} M^{\prime}$.

Exercise 2.3

(a) Recall that 3-SAT is the problem of determining the satisfiabillity of a Boolean formula, in conjunctive normal form, whose clauses have at most three literals. It is well-known that 3-SAT is NP-complete. Give a polynomial time reduction from 3-SAT to Petri net coverability. You can simply illustrate your reduction for the formula $\varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee \neg x_{4}\right)$ by extending the following partial Petri net in such a way that φ is satisfiable if and only if $\{q\}$ is coverable:

(b) Adapt your previous reduction to boundedness instead of coverability.
(c) \star Give a polynomial time reduction from coverability to reachability. [Hint:
(d) \star Prove that the reduction you gave in (c) is correct. [Hint:

Exercise 2.4

Consider the following Petri net $\mathcal{N}=(P, T, F)$:

(a) Draw a coverability graph for $\left(\mathcal{N},\left\{p_{1}\right\}\right)$.
(b) Is $\left(\mathcal{N},\left\{p_{1}\right\}\right)$ bounded? If so, why? If not, which places are bounded?
(c) Describe the set of markings coverable from $\left\{p_{1}\right\}$.

Exercise 2.5

The algorithm Coverability-Graph does not specify how the coverability graph should be traversed during its construction. Show that different traversal strategies can lead to different coverability graphs. More precisely, exhibit a marking M and two different coverability graphs for (\mathcal{N}, M), where \mathcal{N} is the following Petri net:

Solution 2.1

(a) The following Petri net is bounded from the empty marking since its reachability set is empty. However, it is not bounded from $\{p\}$ since repetitively firing t increases the number of tokens in q.

(b) The following Petri net is deadlock-free from $\{p\}$ since s is always enabled. However, it is not deadlock-free from $\{p, q\}$ since $\{p, q\} \xrightarrow{t}\{r\}$ and $\{r\}$ is dead.

(c) \mathcal{N} is live from $M=\{q, q, q\}$, since the reachability graph of (\mathcal{N}, M) is strongly connected and it enables all transitions:

Let us build the reachability graph of $\left(\mathcal{N}, M^{\prime}\right)$ where $M^{\prime}=\{q, q, q, q\}$:

\mathcal{N} is deadlock-free from M^{\prime}, since each marking of the reachability graph enables a transition. However, \mathcal{N} is not live from M^{\prime}, since the bottom strongly connected component colored in blue only enables r.

Solution 2.2

(a) True. Let $A, A^{\prime} \in \mathbb{N}^{P}$ be such that $M \xrightarrow{\sigma} A \xrightarrow{t} A^{\prime} \xrightarrow{\sigma^{\prime}} M^{\prime}$. Since $W(p, t)=0$ for every $p \in P, t$ is enabled at any marking. In particular, $A^{\prime}-A \geq \mathbf{0}$. Thus, $M \xrightarrow{t} M+\left(A^{\prime}-A\right)$ and, by monotonicity, $M+\left(A^{\prime}-A\right) \xrightarrow{\sigma} A+\left(A^{\prime}-A\right)$. Therefore,

$$
M \xrightarrow{t} M+\left(A^{\prime}-A\right) \xrightarrow{\sigma} A^{\prime} \xrightarrow{\sigma^{\prime}} M^{\prime}
$$

(b) False. Consider the following Petri net:

We have $0 \xrightarrow{s t} 1$ and $W(p, t)=W(t, p)$, yet $t s$ cannot be fired from 0 .
(c) True. The proof is symmetric to (a).
(d) False. Consider the following Petri net:

We have $1 \xrightarrow{t s} 0$ and $W(t, p)=W(p, t)$, yet $t s$ cannot be fired from 1 .

Solution 2.3
(a)

(b)

(c) \star Given a Petri net, we make it lossy by adding, for each place p, a transition s_{p} that consumes a token from p :

original Petri net

transformed Petri net

More formally, given a Petri net with weighted $\operatorname{arcs} \mathcal{N}=(P, T, W)$, we build the Petri net $\mathcal{N}^{\prime}=\left(P, T^{\prime}, W^{\prime}\right)$ where

$$
\begin{aligned}
T^{\prime} & =T \cup\left\{s_{p}: p \in P\right\}, \\
W^{\prime}(t, p) & = \begin{cases}W(t, p) & \text { if } t \in T, \\
0 & \text { otherwise }\end{cases} \\
W^{\prime}(p, t) & = \begin{cases}W(p, t) & \text { if } t \in T, \\
-1 & \text { if } t=s_{p}, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

We claim that for every $M, M^{\prime} \in \mathbb{N}^{P}, M^{\prime}$ is coverable in (\mathcal{N}, M) if and only if M^{\prime} is reachable in $\left(\mathcal{N}^{\prime}, M\right)$.
(d) \star We prove the above claim. Let $M, M^{\prime} \in \mathbb{N}^{P}$.
$\Rightarrow)$ Suppose that M^{\prime} is coverable in (\mathcal{N}, M). There exist $M^{\prime \prime} \in \mathbb{N}^{P}$ and $\sigma \in T^{*}$ such that $M^{\prime \prime} \geq M^{\prime}$ and $M \xrightarrow{\sigma} M^{\prime \prime}$ in \mathcal{N}. This implies that $M \xrightarrow{\sigma} M^{\prime \prime}$ in \mathcal{N}^{\prime}. Since $M^{\prime \prime} \geq M^{\prime}$, we have $M^{\prime \prime} \xrightarrow{*} M^{\prime}$ in \mathcal{N}^{\prime} by decreasing the number of tokens accordingly. Therefore, $M \xrightarrow{*} M^{\prime \prime} \xrightarrow{*} M^{\prime}$ in \mathcal{N}^{\prime}.
$\Leftarrow)$ Suppose that M^{\prime} is reachable in $\left(\mathcal{N}^{\prime}, M\right)$. There exists $\sigma \in\left(T^{\prime}\right)^{*}$ such that $M \xrightarrow{\sigma} M^{\prime}$. By definition of \mathcal{N}^{\prime}, for every $t \in T^{\prime} \backslash T$ and $p \in P$, we have $W(t, p)=0$. Thus, by $\# 2.1$ (c), all transitions of $T^{\prime} \backslash T$ occurring in σ can be moved to the end. More formally, there exists $\pi \in T^{*}, \pi^{\prime} \in\left(T^{\prime} \backslash T\right)^{*}$ and $M^{\prime \prime} \in \mathbb{N}^{P}$ such that $\sigma=\pi \pi^{\prime}$ and

$$
M \xrightarrow{\pi} M^{\prime \prime} \xrightarrow{\pi^{\prime}} M^{\prime} .
$$

Since π^{\prime} does not produce any token, we have $M^{\prime \prime} \geq M^{\prime}$. Moreover, $M \xrightarrow{\pi} M^{\prime \prime}$ is a firing sequence of \mathcal{N} since $\pi \in T^{*}$. Therefore, $M^{\prime \prime}$ is coverable in (\mathcal{N}, M).

Solution 2.4

(a) The following is a coverability graph where nodes are labeled with respect to the total order $p_{1}<p_{2}<$ $p_{3}<p_{4}$:

(b) It is not bounded since some markings of the graph contain ω. Places p_{1}, p_{2} and p_{3} are bounded because no marking of the graph contains an ω in the three first components.
\star This can also be tested with LoLA as follows:

```
> lola pn_2-4.lola -f "AG (p1 < oo)" --search=cover
lola: result: yes
lola: The net satisfies the given formula.
```

> lola pn_2-4.lola -f "AG (p2 < oo)" --search=cover
lola: result: yes
lola: The net satisfies the given formula.
> lola pn_2-4.lola -f "AG (p3 < oo)" --search=cover
lola: result: yes
lola: The net satisfies the given formula.
> lola pn_2-4.lola -f "AG (p4 < oo)" --search=cover
lola: result: no
lola: The net does not satisfy the given formula.
(c) $\left\{M \in \mathbb{N}^{P}: M\left(p_{1}\right)+M\left(p_{2}\right)+M\left(p_{3}\right)=1\right\}$.

Solution 2.5

Let $M=\left\{p_{1}\right\}$. We exhibit two coverability graphs for (\mathcal{N}, M), where nodes are labeled with respect to the total order $p_{1}<p_{2}$. We construct the first coverability graph by first exploring the path $t_{2} t_{3} t_{1} t_{1}$:

For the second coverability graph, we first explore the path $t_{2} t_{1} t_{3}$:

Note that the subprocedure AddOmegas generates (ω, ω) after exploring $t_{2} t_{1} t_{3}$ because, at this point, both $(1,0)$ and $(0,1)$ are "ancestors" of the current node labeled by $(1,1)$.

