Petri nets — Homework 2

Due 17.05.2017

Exercise 2.1

- (a) Give a Petri net \mathcal{N} and two markings M and M' such that $M \leq M'$, (\mathcal{N}, M) is bounded, and (\mathcal{N}, M') is not bounded.
- (b) Give a Petri net \mathcal{N} and two markings M and M' such that $M \leq M'$, (\mathcal{N}, M) is deadlock-free, and (\mathcal{N}, M') is *not* deadlock-free.
- (c) Consider the following Petri net \mathcal{N} (with weighted arcs):

Give markings M and M' such that $M \leq M'$, (\mathcal{N}, M) is live, and (\mathcal{N}, M') is deadlock-free but not live.

Exercise 2.2

Let $\mathcal{N} = (P, T, W)$ be a Petri net with weighted arcs. Let $M, M' \in \mathbb{N}^P$, $\sigma, \sigma' \in T^*$ and $t \in T$ be such that $M \xrightarrow{\sigma t \sigma'} M'$. Prove or disprove the following statements:

- (a) if t does not consume any token, i.e W(p,t) = 0 for every $p \in P$, then $M \xrightarrow{t\sigma\sigma'} M'$.
- (b) if t consumes no more tokens than it produces, i.e $W(p,t) \leq W(t,p)$ for every $p \in P$, then $M \xrightarrow{t\sigma\sigma'} M'$.
- (c) if t does not produce any token, i.e. W(t,p) = 0 for every $p \in P$, then $M \xrightarrow{\sigma\sigma' t} M'$.
- (d) if t produces no more tokens than it consumes, i.e. $W(t,p) \leq W(p,t)$ for every $p \in P$, then $M \xrightarrow{\sigma\sigma' t} M'$.

Exercise 2.3

(a) Recall that 3-SAT is the problem of determining the satisfiability of a Boolean formula, in conjunctive normal form, whose clauses have at most three literals. It is well-known that 3-SAT is NP-complete. Give a polynomial time reduction from 3-SAT to Petri net coverability. You can simply illustrate your reduction for the formula $\varphi(x_1, x_2, x_3, x_4) = (x_1 \lor x_2 \lor x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg x_2 \lor \neg x_3 \lor \neg x_4)$ by extending the following partial Petri net in such a way that φ is satisfiable if and only if $\{q\}$ is coverable:

(b) Adapt your previous reduction to boundedness instead of coverability.

(c) \bigstar Give a polynomial time reduction from coverability to reachability. [Hint:

(d) \bigstar Prove that the reduction you gave in (c) is correct. [Hint:

Exercise 2.4

Consider the following Petri net $\mathcal{N} = (P, T, F)$:

- (a) Draw a coverability graph for $(\mathcal{N}, \{p_1\})$.
- (b) Is $(\mathcal{N}, \{p_1\})$ bounded? If so, why? If not, which places are bounded?
- (c) Describe the set of markings coverable from $\{p_1\}$.

Exercise 2.5

The algorithm COVERABILITY-GRAPH does not specify how the coverability graph should be traversed during its construction. Show that different traversal strategies can lead to different coverability graphs. More precisely, exhibit a marking M and two different coverability graphs for (\mathcal{N}, M) , where \mathcal{N} is the following Petri net:

