
Petri Nets

Lecture Notes

Prof. Javier Esparza

April 11, 2017

2

Contents

I Petri Nets: Syntax, Semantics, Models 7

1 Basic definitions 9

1.1 Preliminaries . 9

1.2 Syntax . 12

1.3 Semantics . 14

2 Modelling with Petri nets 17

2.1 A buffer of capacity n . 17

2.2 Train tracks . 18

2.3 Dining philosophers . 20

2.4 A logical puzzle . 20

2.5 Peterson’s algorithm . 22

2.6 The action/reaction protocol . 22

2.7 Variants of the main model . 24

2.8 Analysis problems . 28

II Analysis Techniques for Petri Nets 31

3 Decision procedures 35

3.1 Decision procedures for 1-bounded Petri nets 35

3.1.1 Complexity . 35

3.2 Decision procedures for general Petri nets 39

3.2.1 A decision procedure for Boundedness 39

3.2.2 Decision procedures for Coverability 41

3.2.3 Decision procedures for other problems 50

3.2.4 Complexity . 54

4 Semi-decision procedures 65

4.1 Linear systems of equations and linear programming 65

4.2 The Marking Equation . 66

4.3 S- and T-invariants . 69

4.3.1 S-invariants . 69

4.3.2 T-invariants . 72

3

4 CONTENTS

4.4 Siphons and Traps . 73

4.4.1 Siphons . 73

4.4.2 Traps . 75

5 Petri net classes with efficient decision procedures 79

5.1 S-Systems . 80

5.2 T-systems . 81

5.2.1 Liveness . 81

5.2.2 Boundedness . 82

5.2.3 Reachability . 83

5.2.4 Other properties . 84

5.3 Free-Choice Systems . 87

5.3.1 Liveness . 88

5.3.2 Boundedness . 94

5.3.3 Reachability . 96

5.3.4 Other properties . 100

CONTENTS 5

Sources

The main sources are:

J. Desel. Struktur und Analyse von Free-Choice-Petrinetzen. Deutscher

Universitäts Verlag, 1992.

J. Desel und J. Esparza. Free-choice Petri nets. Cambridge Tracts in

Theoretical Computer Science 40, Cambridge University Press, 1995.

The Petri net model of Peterson’s algorithm is taken from

E. Best. Semantics of Sequential and Parallel Programs. Prentice-Hall,

1996.

The action-reaction protocol is taken from

R. Walter. Petrinetzmodelle verteilter Algorithmen – Intuition und Be-

weistechnik. Dieter Bertz Verlag, 1996.

The train examples of Chapter 2 belong to the Petri net folklore. They were first

introduced by H. Genrich.

6 CONTENTS

Part I

Petri Nets: Syntax, Semantics,

Models

7

Chapter 1

Basic definitions

1.1 Preliminaries

Numbers

N, Z, Q and R denote the natural, rational, and real numbers.

Relations

Let X be a set and R ⊆ X × X a relation. R∗ denotes the transitive and reflexive

closure of R. R−1 is the inverse of R, that is, the relation defined by (x, y) ∈ R−1 ⇔
(y, x) ∈ R.

Sequences

A finite sequence over a set A is a mapping σ : {1, . . . , n} → A, denoted by the string

a1a2 . . . an, where ai = σ(i) for every 1 ≤ i ≤ n, or the mapping ǫ : ∅ → A, the

empty sequence. The length of σ is n and the length of ǫ is 0.

An infinite sequence is a mapping σ : IN → A. We write σ = a1a2a3 . . . with

ai = σ(i).
The concatenation of two finite sequences or of a finite and an infinite sequence is

defined as usual. Given a finite sequence σ, we denote by σω the infinite concatenation

σσσ

σ is a prefix of τ if σ = τ or σσ′ = τ for some sequence σ′.
The alphabet of a sequence σ is the set of elements of A occurring in σ. Given

a sequence σ over A and B ⊆ A, the projection or restriction σ|B is the result of

removing all occurrences of elements a ∈ A \B in σ.

Vectors and matrices

Let A = {a1, . . . , an} be a finite set and let K be one of N,Z,Q,R.

9

10 CHAPTER 1. BASIC DEFINITIONS

We represent a mapping X : A → K by the vector (X(a1), . . . , X(an)). We

identify the mapping X and its vector representation.

Given vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn), the (scalar) product X ·Y
is the number x1y1 + . . . + xnyn (we do not distinguish between row and column

vectors!). We write X ≥ Y to denote x1 ≥ y1 ∧ . . . ∧ xn ≥ yn,a nd X > Y to denote

x1 > y1 ∧ . . . ∧ xn > yn.

Let B = {b1, . . . , bm} be a finite set. A mapping C : A × B → K is represented

by the n×m matrix

C(a1, b1) C(a1, b2) · · · C(a1, bm)
C(a2, b1) C(a2, b2) · · · C(a2, bm)
· · · · · · · · · · · ·

C(an, b1) C(an, b2) · · · C(an, bm)

We also write C = (cij)i=1,...,n,j=1,...,m, where cij = C(ai, bj).
Let X = (x1, . . . , xm) be a vector and let C be a n×m matrix. The product C ·X

is the vector Y = (y1, . . . , yn) given by

y(i) = ci1x1 + . . .+ cimxm

and for X = (x1, . . . , xn) the product X · C is the vector Y = (y1, . . . , ym) given by

y(i) = c1ix1 + . . .+ cnixn

Complexity Classes

We recall some basic notions of complexity theory. Formal definitions can be found in

standard textbooks.

A program is deterministic if it only has one possible computation for each input.

A program is nondterministic if it may execute different computations for the same

input.

A program (deterministic or not) runs in f(n)-time for a function f : N→ N if for

every input of length n (measured in bits) every computation takes at most f(n) time.

Given a set C of functions N → N (for example, C can be the set of all polynomial

functions), a program runs in C-time if it runs in f(n) time for some function f(n) of

C. Often we speak of a “polynomial-time program” or “exponential-time” program,

meaning a program that runs in time f(n) for some polynomial resp. exponential

function f(n).
Similarly, a program needs f(n)-memory or f(n)-space for a function f : N → N

if it uses at most f(n) bits of memory for every input of length n. The f(n) bits do

not include the memory needed to store the input. We speak of “polynomial-space” or

“exponential-space” programs.

Informally, a problem consists of a universe U of possible inputs, and a predicate

P on U assigning to each u ∈ U a value P (u) ∈ {0, 1}. For example, U can be the set

of all finite graphs, and P (u) the predicate with P (u) = 1 iff u has a cycle.

A deterministic program solves a problem (U, P) if it terminates for every input

u ∈ U and returns P (u).
A nondeterministic program solves a problem (P,U) if for every input u ∈ U :

1.1. PRELIMINARIES 11

• if P (u) = 1 then at least one computation of the program returns 1; and

• if P (u) = 0 then every computation of the program returns 0.

Observe: if the program returns 1 then we know P (u) = 1, otherwise we do not know

anything.

• P is the class of problems that can be solved by polynomial-time dterministic

programs.

• NP is the class of problems that can be solved by polynomial-time nondtermin-

istic programs.

• PSPACE is the class of problems that can be solved by polynomial-space deter-

minstic programs.

• NPSPACE is the class of problems that can be solved by polynomial-space

nondterministic programs.

• EXPTIME is the class of problems that can be solved by exponential-time de-

terministic programs.

• EXPSPACE is the class of problems that can be solved by exponential-space

deterministic programs.

We have

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE.

It is widely believed that all these inclusions are strict. However, all we know for sure

is the (rather trivial fact) P ⊂ EXPTIME. We also know:

Theorem 1.1.1 [Savitch’s theorem]

NPSPACE = PSPACE.

A problem Π1 = (U1, P1) can be polynomially reduced to Π2 = (U2, P2) if there

is a function f : U1 → U2 satisfying the following two properties:

• for every u1 ∈ U1: P1(u1) = 1 iff P2(f(u1)), and

• there is a polynomial-time deterministic program that computes f .

For all the complexity classes above, if Π1 can be reduced to Π2 and Π2 belongs to the

class, then so does Π1.

A problem is hard for a complexity class if all problems in the class can be reduced

to it. It is complete for the class if it is hard for the class, and belongs to the class.

12 CHAPTER 1. BASIC DEFINITIONS

t2t1 t3 t4

s1 s3 s5

s2 s4 s6

Figure 1.1: Graphical representation of the net N

1.2 Syntax

Definition 1.2.1 (Net, preset, postset)

A net N = (S, T, F) consists of a finite set S of places (represented by circles), a

finite set T of transitions disjoint from S (squares), and a flow relation (arrows) F ⊆
(S × T) ∪ (T × S).

The places and transitions of N are called elements or nodes. The elements of F
are called arcs.

Given x ∈ S ∪ T , the set •x = {y | (y, x) ∈ F} is the preset of x and x• =
{y | (x, y) ∈ F} is the postset of x. For X ⊆ S ∪ T we denote •X =

⋃

x∈X

•x and

X• =
⋃

x∈X

x•.

Example. Let N = (S, T, F) be the net

S = {s1, . . . , s6}

T = {t1, . . . , t4}

F = {(s1, t1), (t1, s2), (s2, t2), (t2, s1),

(s3, t2), (t2, s4), (s4, t3), (t3, s3),

(s5, t3), (t3, s6), (s6, t4), (t4, s5)}

Figure 1.1 shows the graphical representation of N . For example we have •t2 =
{s2, s3} and •S = S• = T .

Remark: Nets with empty S, T or F are allowed!

Definition 1.2.2 (Subnet)

N ′ = (S′, T ′, F ′) is a subnet of N = (S, T, F) if

• S′ ⊆ S,

• T ′ ⊆ T , and

• F ′ = F ∩ ((S′ × T ′) ∪ (T ′ × S′)) (not F ′ ⊆ F ∩ ((S′ × T ′) ∪ (T ′ × S′)) !).

1.2. SYNTAX 13

t3 t2 t3

t2

Subnets Non-subnets

s1

s4s4

t2

s3s3

s1

t1t1

Figure 1.2: Subnets and non-subnets of the net of Figure 1.1

Figure 1.2 shows some subnets and non-subnets of the net of Figure 1.1.

Definition 1.2.3 (Path, circuit)

A path of a net N = (S, T, F) is a finite, nonempty sequence x1 . . . xn of nodes of N
such that (x1, x2), . . . , (xn−1, xn) ∈ F . We say that a path x1 . . . xn leads from x1 to

xn.

A path is a circuit if (xn, x1) ∈ F and (xi = xj)⇒ i = j for every 1 ≤ i, j ≤ n.

N is connected if (x, y) ∈ (F ∪ F−1)∗ for every x, y ∈ S ∪ T , and strongly

connected if (x, y) ∈ F ∗ for every x, y ∈ S ∪ T .

Remarks:

• Every net with 0 or 1 node is strongly connected!

• If N is strongly connected then it is also connected.

Proposition 1.2.4 Let N = (S, T, F) be a net.

(1) N is connected iff there are no two subnets (S1, T1, F1) and (S2, T2, F2) of N
such that

• S1 ∪ T1 6= ∅, S2 ∪ T2 6= ∅;

• S1 ∪ S2 = S, T1 ∪ T2 = T , F1 ∪ F2 = F ;

• S1 ∩ S2 = ∅, T1 ∩ T2 = ∅.

(2) A connected net is strongly connected iff for every (x, y) ∈ F there is a path

leading from y to x.

Proof. Exercise. �

14 CHAPTER 1. BASIC DEFINITIONS

1.3 Semantics

Definition 1.3.1 (Markings)

Let N = (S, T, F) be a net. A marking of N is a mapping M : S → IN. Given R ⊆ S
we write M(R) =

∑

s∈R

M(s). A place s is marked at M if M(s) > 0. A set of places

R is marked at M if M(R) > 0, that is, if at least one place of R is marked at M .

Instead of mappingsS → IN sometimes we use vectors. For this we fix a total order

on the places of N . With this convention we can represent a marking M : S → IN as a

vector of dimension |S|.
Markings are graphically represented by drawing black dots (“tokens”) on the

places.

Definition 1.3.2 (Firing rule, dead markings)

A transition is enabled at a marking M if M(s) ≥ 1 for every place s ∈ •t. If

t is enabled, then it can occur or fire, leading from M to the marking M ′ (denoted

M
t
−→M ′) given by:

M ′(s) =

M(s)− 1 if s ∈ •t \ t•

M(s) + 1 if s ∈ t• \ •t
M(s) otherwise

A marking is dead if it does not enable any transition.

Example 1.3.3 Let M be the marking of the net N in Figure 1.1 given by M(s1) =
M(s4) = M(s5) = 1 and M(s2) = M(s3) = M(s6) = 0. We denote this marking

by the vector (1, 0, 0, 1, 1, 0).

The marking enables transitions t1 and t3, because •t1 = {s1} and •t3 = {s4, s5}.
Transition t2 is not enabled, because M(s2) = 0. Transition t4 is not enabled, because

M(s6) = 0. We have

(1, 0, 0, 1, 1, 0)
t1−→ (0, 1, 0, 1, 1, 0)

(1, 0, 0, 1, 1, 0)
t3−→ (1, 0, 1, 0, 0, 1)

Definition 1.3.4 (Firing sequence, reachable marking)

Let N = (S, T, F) be a net and let M be a marking of N . A finite sequence σ =
t1 . . . tn is enabled at a marking M if there are markings M1,M2, . . . ,Mn such that

M
t1−→ M1

t2−→ M2
t3−→ . . .

tn−→ Mn. We write M
σ
−→ Mn. The empty sequence ǫ

is enabled at any marking and we have M
ǫ
−→M .

If M
σ
−→ M ′ for some markings M,M ′ and some sequence σ, then we write

M
∗
−→ M ′ and say that M ′ is reachable from M . [M〉 denotes the set of markings

that are reachable from M .

An infinite sequence σ = t1t2 . . . is enabled at a marking if there are markings

M1,M2, . . . such that M
t1−→M1

t2−→M2 −→ . . .

1.3. SEMANTICS 15

Example 1.3.5 Let N be the net of Figure 1.1 and let M = (1, 0, 0, 1, 1, 0) be a mark-

ing of N . We have

(1, 0, 0, 1, 1, 0)
t1−−→ (0, 1, 0, 1, 1, 0)

t3−−→ (0, 1, 1, 0, 0, 1)
↓ t2

(1, 0, 0, 1, 0, 1)
t4−−→ (1, 0, 0, 1, 1, 0)

So M enables the finite sequence t1 t3 t2 t4 and the infinite sequence (t1 t3 t2 t4)
ω.

Proposition 1.3.6 A (finite or infinite) sequence σ is enabled at M iff every finite prefix

of σ is enabled at M .

Proof. Easy exercise. �

The following simple lemma plays a fundamental role in many results about Petri

nets.

Lemma 1.3.7 [Monotonicity lemma]

Let M and L be two markings of a net.

(1) If M
σ
−→ M ′ for a finite sequence σ, then (M + L)

σ
−→ (M ′ + L) for every

marking L.

(2) If M
σ
−→ for an infinite sequence σ, then (M + L)

σ
−→ for every marking L.

Proof. (1): by induction on the length of σ.

Basis: σ = ǫ. ǫ is enabled at any marking.

Step: Let σ = τt (t transition) such that M
τ
−→ M ′′ t

−→ M ′. By induction hy-

pothesis (M + L)
τ
−→ (M ′′ + L). From the firing rule and M ′′ t

−→ M ′ we get

(M ′′ + L)
t
−→ (M ′ + L). So (M + L)

τt
−→ (M ′ + L).

(2): We show that every finite prefix of σ is enabled at M +L. The result then follows

from Proposition 1.3.6. By Proposition 1.3.6, every finite prefix of σ is enabled at M .

That is, for every finite prefix τ of σ there is a marking M ′ such that M
τ
−→ M ′. By

(1) we get (M + L)
τ
−→ (M ′ + L), and we are done. �

Definition 1.3.8 (Petri nets)

A Petri net, net system, or just a system is a pair (N,M0) where N is a connected net

N = (S, T, F) with nonempty sets of places and transitions, and an initial marking

M0 : S → IN. A marking M is reachable in (N,M0) or a reachable marking of

(N,M0) if M0
∗
−→M .

Definition 1.3.9 (Reachability graph)

The reachability graph G of a Petri net (N,M0) where N = (S, T, F) is the directed,

labeled graph satisfying:

• The nodes of G are the reachable markings of (N,M0).

16 CHAPTER 1. BASIC DEFINITIONS

• The edges of G are labeled with transitions from T .

• There is an edge from M to M ′ labeled by t iff M
t
−→M , that is, iff M enables

t and the firing of t leads from M to M ′.

REACHABILITY-GRAPH((S, T, F,M0))
1 (V,E, v0) := ({M0}, ∅,M0);
2 Work : set := {M0};
3 while Work 6= ∅
4 do selectM fromWork ;
5 Work := Work \ {M};
6 for t ∈ enabled(M)
7 do M ′ := fire(M, t);
8 if M ′ /∈ V
9 then V := V ∪ {M ′}

10 Work := Work ∪ {M ′};
11 E := E ∪ {(M, t,M ′)};
12 return (V,E, v0)

Figure 1.3: Algorithm for computing the reachability graph

The algorithm of Figure 1.3 computes the reachability graph. It uses two functions:

• enabled(M): returns the set of transitions enabled at M .

• fire(M, t): returns the marking M ′ such that M
t
−→M ′.

The set Work may be implemented as a stack, in which case the graph will be con-

structed in a depth-first manner, or as a queue for breadth-first. Breadth first search will

find the shortest transition path from the initial marking to a given (erroneous) marking.

Some applications require depth first search.

Chapter 2

Modelling with Petri nets

2.1 A buffer of capacity n

We model a buffer with capacity for n items. Figure 2.1 shows the Petri net for n = 3.

The model consists of n cells, each of them with capacity for one item. The addition

s1 s5

Cell-1-full Cell-2-full Cell-3-full

Cell-3-emptyCell-2-emptyCell-1-empty

t3t2t1

s6s4s2

t4

s3

Figure 2.1: A 3-buffer

of a new item is modeled by the firing of t1. The firing of transition ti models moving

the item in cell i− 1 to cell i. Firing tn+1 models removing one item. Observe that the

buffer is concurrent: there are reachable markings at which transitions t1 and tn+1 can

occur independently of each other, that is, an item can be added while another one is

being removed.

Figure 2.2 shows the reachability graph of the buffer with capacity 3. By inspection

of the reachability graph we can see that the following properties hold:

• Consistency: no cell is simultaneously empty and full (that is, no marking puts to-

kens on si and si+1 for i = 1, 2, 3).
• 1-boundedness: every reachable marking puts at most one token in a given place.
• Deadlock freedom: every reachable marking has at least one successor marking.

Even more: every cell can always be filled and emptied again (every transition can

occur again).

17

18 CHAPTER 2. MODELLING WITH PETRI NETS

(10 10)

10 10)

(10 10 10)

(01

01

10) (10 10

10

(10

(01 01 01)

(01 01)

01 01)

(01 01 01)

t2

t3

t1

t1
t4

t1

t2

t4

t3t4

t1

t4

Figure 2.2: Reachability graph of the 3-buffer

• Capacity 3: the buffer has indeed capacity 3, that is, there is a reachable marking

that puts one token in s2, s4, s6.

• The initial marking is reachable from any reachable marking (that is, it is always

possible to empty the buffer).

• Between any two reachable markings there is a path of length at most 6.

2.2 Train tracks

Four cities are connected by unidirectional train tracks building a circle. Two trains

circulate on the tracks. Our task is to ensure that it will never be the case that two trains

occupy the same track.

Figure 2.3 shows a solution of the problem modeled as a Petri net. the four tracks

are modeled by places s1, . . . , s4. A token on si means that there is train in the i-th
track.

The four control places l1, . . . , l4 guarantee that no reachable marking puts more

than one token on si. This property can be proven by means of the reachability graph

shown in Figure 2.4. Since every reachable marking puts at most one token on a place,

we denote a marking by the set of places marked by it. For instance, we denote by

{l1, s2, l3, s4} the marking that puts a token on l1, s2, l3 and s4.

Consider now a slightly different system. We have 8 cities connected in a circuit,

and three trains use the tracks. To increase safety, we have to guarantee that there

2.2. TRAIN TRACKS 19

t1

s2

t2t3

s4

t4

s1

l3

l1

s3

l4 l2

Figure 2.3: Train tracks (first version)

s2 l3

s2 l3

s2 l3

l2 s3

l2 s3

s3 l2

t3

t4

t4

t3t1

t1

t2

t2

{l1 s4}

{l1 s4} {s1 l4}

{s1 l4}

{l1 l4} {s1 s4}

Figure 2.4: Reachability graph of the Petri net of Figure 2.3

20 CHAPTER 2. MODELLING WITH PETRI NETS

Figure 2.5: Train tracks (second version)

always is at least one empty track between any two trains.

The Petri net of Figure 2.5 is a solution of the problem: The reader can construct

the reachability graph and show that the desired property holds. However, the graph is

pretty large!

2.3 Dining philosophers

Four philosophers sit around a round table. There are forks on the table, one between

each pair of philosophers. The philosophers want to eat spaghetti from a large bowl

in the center of the table (see the top of Figure 2.6). Unfortunately the spaghetti is

of a particularly slippery type, and a philosopher needs both forks in order to eat it.

The philosophers have agreed on the following protocol to obtain the forks: Initially

philosophers think about philosophy, when they get hungry they do the following: (1)

take the left fork, (2) take the right fork and start eating, (3) return both forks simul-

taneously, and repeat from the beginning. Figure 2.6 shows a Petri net model of the

system.

Two interesting questions about this systems are:

• Can the philosophers starve to death (because the system reaches a deadlock)?

• Will an individual philosopher eventually eat, assuming she wants to?

2.4 A logical puzzle

A man is travelling with a wolf, a goat, and a cabbage. The four come to a river that

they must cross. There is a boat available for crossing the river, but it can carry only

the man and at most one other object. The wolf may eat the goat when the man is not

around, and the goat may eat the cabbage when unattended (see Figure 2.7)

2.4. A LOGICAL PUZZLE 21

4

1 2

3

fork

fork

fork fork

l1 ✛
✠

❄
r1✲ ✲

✻

b1

✻

✛

❘

■

thinking

eating

r2✛
❘

✻

l2✲ ✲

✻

b2

❄

✛

✠

✒

eating

thinking

l3✲

✒

✻

r3✛ ✛
❄

b3
❄

✲

■

❘

thinking

eating

r4 ✲

■

❄

l4✛ ✛
❄

b4

✻

✲

✒

✠

eating

thinking

Figure 2.6: Petri net model of the dining philosophers

22 CHAPTER 2. MODELLING WITH PETRI NETS

Can the man bring everyone across the river without endangering the goat or the

cabbage? And if so, how?

We model the system with a Petri net. The puzzle mentions the following objects:

Man, wolf, goat, cabbage, boat. Both can be on either side of the river. It also mentions

the following actions: Crossing the river, wolf eats goat, goat eats cabbage.

Objects and their states are modeled by places. (We can omit the boat, because it is

always going to be on the same side as the man.) Actions are modeled by transitions.

Figure 2.7 shows the transitions for the three actions.

2.5 Peterson’s algorithm

Peterson’s algorithm is a well-known solution to the mutual exclusion problem for two

processes.

var m1,m2 : {false, true} (init false);

hold : {1, 2};

while true do

m1 := true;
hold := 1;
await(¬m2 ∨ hold = 2);
(critical section);

m1 := false;
od

while true do

m2 := true;
hold := 2;
await(¬m1 ∨ hold = 1);
(critical section);

m2 := false;
od

The Petri net of Figure 2.8 models this algorithm. The variable mi is modeled by

the places mi = true and mi = false . A token on mi = true means that at the

current state of the program (marking) the variable mi has the value true (so the Petri

net must satisfy the property that no reachable marking puts tokens on both mi = true

and mi = false at the same time). Variable hold is modeled analogously.

A token on p4 (q4) indicates that the left (right) process is in its critical section.

Mutual exclusion holds if no reachable marking puts a token on p4 and q4. The Petri

net has 20 reachable markings.

2.6 The action/reaction protocol

Two agents must repeatedly exchange informations. When an agent requests an infor-

mation from the other one, it must wait for an answer before proceeding. The task is to

design a protocol for the exchanges. In particular, the protocol must guarantee that it

is not possible to reach a situation in which both processes are waiting from an answer

from the other one.

A first attempt at a solution is shown in Figure 2.9. Requests are modeled by the

Action transitions, and replies by the Reaction transitions. However, this solution can

reach a deadlock: both processes can issue a request simultaneously, after which they

2.6. THE ACTION/REACTION PROTOCOL 23

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WLR

MLR

CLR

GLR

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WRL

MRL

CRL

GRL

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WL

ML

WGL WGR

CGL CGR

Figure 2.7: Transitions modelling the actions of the puzzle

24 CHAPTER 2. MODELLING WITH PETRI NETS

q4

q3

v1

v4

v3

q2

v6

q1

u1u6

u3

u4

m1 = t

m2 = fp1

p2

p3

p4

hold = 2

m2 = t

u5

hold = 1

v5

u2 v2

m1 = f

Figure 2.8: Petri net model of Peterson’s algorithm

wait forever for an answer. We call such a situation a crosstalk. Figure 2.10 shows a

second attempt. Now processes can detect that a crosstalk has taken place. If a process

detects a crosstalk, it answers the request of its partner, and then continues to wait for an

answer to its own request. This solution has no deadlocks (prove it!), but it exhibits the

following problem: a non-cooperative process can always get answers to its requests,

without ever answering any request from its partner. The solution is deadlock free, but

unfair. The third attempt (Figure 2.11) is fair. If a process detects a crosstalk, then it

answers the request of its partner, as before, but then it moves to a state in which it is

only willing to receive an answer to its own question. Unfortunately, the system has

again a deadlock (can you find it?).

The final attempt (Figure 2.12) is both deadlock-free and fair. The protocol works

in rounds. A “good” round consists of a request and an answer. In a “bad” round both

processes issue a request and they reach a crosstalk situation. Such a round continues as

follows: both processes detect the crosstalk, send each other an “end-of-round” signal,

wait for the same signal from their partner, and then move to their initial states.

The solution is not perfect. In the worst case there are only bad rounds, and no

requests are answered at all.

2.7 Variants of the main model

Definition 2.7.1 (Nets with place capacities)

A net with capacities N = (S, T, F,K) consists of a net (S, T, F) and a mapping

K : S → IN.

A transition t is enabled at a marking M of N if

2.7. VARIANTS OF THE MAIN MODEL 25

wait-l

action-l

reaction-l

answer-rl

request-rl

request-lr

reaction-r

done-r

action-r

wait-r

answer-lr

done-l

idle-l idle-r

Figure 2.9: First attempt

ct-rct-l i-r

r-r

d-r

a-r

w-rd-l

r-l

i-l

a-l

w-l

a-rl

r-lr

r-rl

a-lr

Figure 2.10: Second attempt

26 CHAPTER 2. MODELLING WITH PETRI NETS

ct-l

ct-r

i-l

a-l

w-l

r-l

d-l

i-r

a-rl

a-lr

r-lr

r-rl

d-r

r-r

a-r

w-r

Figure 2.11: Third attempt

end-of-round-l

end-of-round-r

i-r

r-l

i-l

a-l

w-r

d-r

r-r

a-r

w-l

d-l

r-lr

ct-l ct-r

a-lr

r-rl

a-rl

Figure 2.12: Last attempt

2.7. VARIANTS OF THE MAIN MODEL 27

Ri Si

ri

si

m

m

wj

Vj

vj

m

Wj

Ri: Process i reads

Process i idleSi:

ri: Process i starts reading

si: Process i stops reading

Wi:

Vj :

Process j writes

Process j idle

wj : Process j starts writing

vj : Process j stops writing

m readers n writers

Figure 2.13: Readers and writers

– M(s) ≥ 1 for every place s ∈ •t and

– M(s) < K(s) for every place s ∈ t• \ •t
The notions of firing, Petri net with capacities, etc. are defined as in the capacity-free

case.

Definition 2.7.2 (Nets with weighted arcs)

A net with weighted arcs N = (S, T,W) consists of two disjoint sets of places and

transitions and a weight function W : (S×T)∪(T×S)→ IN. A transition t is enabled

at a marking M of N if M(s) ≥ W (s, t) for every s ∈ S. If t is enabled then it can

occur leading to the marking M ′ defined by

M ′(s) = M(s) +W (t, s)−W (s, t)

for every place s. Other notions are defined as in the standard model.

The Petri net with weighted arcs of Figure 2.13 models a solution to the “readers

and writers” problem. A set of processes has access to a database. Processes can read

concurrently, but a process can only write if no other processes reads nor writes.

Exercise: Modify the Petri net so that reading processes can not indefinitely pre-

vent another process from writing.

Definition 2.7.3 (Nets with inhibitor arcs)

A net with inhibitor arcs N = (S, T, F, I) consists of two disjoint sets of places and

transitions, a set F ⊆ (S×T)∪ (T ×S) of arcs, and a set I ⊆ S×T , disjoint with F ,

of inhibitor arcs. A transition t is enabled at a marking M of N if M(s) > 0 for every

28 CHAPTER 2. MODELLING WITH PETRI NETS

place s such that (s, t) ∈ F , and M(s) = 0 for every place s such that (s, t) ∈ I . If

t is enabled then it can occur leading to the marking M ′, defined as for standard Petri

nets.

Definition 2.7.4 (Nets with reset arcs)

A net with reset arcs N = (S, T, F,R) consists of two disjoint sets of places and

transitions, a set F ⊆ (S × T) ∪ (T × S) of arcs, and a set R ⊆ S × T , disjoint with

F , of reset arcs. A transition t is enabled at a marking M of N if M(s) > 0 for every

place s such that (s, t) ∈ F ∪R. If t is enabled then it can occur leading to the marking

obtained after the following operations:

• Remove one token from every place s such that (s, t) ∈ F .

• Remove all tokens from every place s such that (s, t) ∈ R.

• Add one token to every place s such that (t, s) ∈ F .

2.8 Analysis problems

We introduce a number of properties we are interested in. We assume that nets have at

least one place and one transition.

Definition 2.8.1 (System properties)

Let (N,M0) be a Petri net.

(N,M0) is deadlock free if every reachable marking enables at least one transition

(that is, no reachable marking is dead).

(N,M0) is live if for every reachable marking M and every transition t there is a

marking M ′ ∈ [M〉 that enables t. (Intuitively: every transition can always fire again).

(N,M0) is bounded, if for every place s there is a number b ≥ 0 such that

M(s) ≤ b for every reachable marking M . M0 is a bounded marking of N if (N,M0)
is bounded. The bound of a place s of a bounded Petri net (N,M0) is the number

max{M(s) |M ∈ [M0〉}

(N,M0) is b-bounded if every place has bound b.

In these notes we study the following problems:

• Deadlock freedom: is a given Petri net (N,M0) deadlock-free?

• Liveness: is a given Petri net (N,M0) live?

• Boundedness: is a given Petri net (N,M0) bounded?

• b-boundedness: given b ∈ N and a Petri net (N,M0), is (N,M0) b-bounded?

• Reachability: given a Petri net (N,M0) and a markingM ofN , is M reachable?

• Coverability: given a Petri net (N,M0) and a marking M of N , is there a

reachable marking M ′ ≥M?

2.8. ANALYSIS PROBLEMS 29

There are some simple connections between these problems:

Proposition 2.8.2

(1) Liveness implies deadlock freedom.

(2) If (N,M0) is bounded then there is a number b such that (N,M0) is b-bounded.

(3) If (N,M0) is bounded, then it has finitely many reachable markings.

Proof. (1) follows immediately from the definitions. (2) and (3) follow from the defi-

nitions and from the fact that a Petri net has finitely many places. �

Sometimes we also use the following notion

Definition 2.8.3 (Well-formed nets)

A net N is well formed if there is a marking M0 such that the Petri net (N,M0) is live

and bounded.

and consider the following problem

• Well-formedness: is a given net well formed?

30 CHAPTER 2. MODELLING WITH PETRI NETS

Part II

Analysis Techniques for Petri

Nets

31

33

Chapter 3 shows (sometimes without proofs) that Deadlock-freedom, Liveness,

Boundedness, b-Boundedness, Coverability, and Reachability are all decidable. The

decision procedures for these problems have high complexity, but, at the same time,

results of complexity theory show that no efficient algorithms exist for them.

Since better runtimes are often required in many practical applications, we often

use algorithms that can be applied to arbitrary Petri nets, but sometimes answer ‘’

don’t know”, or do not terminate. We call them semi-decision procedures. We also use

faster decision procedures for special Petri net classes.

Chapter 4 is devoted to semi-decision procedures. Chapter 5 presents efficient de-

cision algorithms for three classes: S-nets, T -nets, and Free-Choice nets

34

Chapter 3

Decision procedures

3.1 Decision procedures for 1-bounded Petri nets

In many practical cases Petri nets are 1-bounded by construction. A 1-bounded Petri net

has finitely many reachable markings, and so the reachability graph can be computed

and stored, at least in principle. If the reachability graph is available, then it is easy to

give algorithms for b-Boundedness, Reachability, and Deadlock-freedom running in

linear time in the size of the reachability graph. We show now that this is also the case

for Liveness.

Let G = (V,E) be the reachability graph of a Petri net(N,M0). We define the

relation
∗
←→⊆ V × V as follows: M

∗
←→M ′ gdw. M

∗
−→M ′ und M ′ ∗

−→M.
∗
←→ is clearly an equivalence relation on V . Each equivalence class V ′ ⊆ V of

∗
←→ yields together with E′ = E ∩ (V ′ × V) a strongly connected component (SCC)

(V ′, E′) of G.

Strongly connected components are partially ordered by the relation < defined as

follows: (V ′, E′) < (V ′′, E′′) if V ′ 6= V ′′ and ∀M ′ ∈ V ′, M ′′ ∈ V ′′ : M ′′ ∈ [M ′〉.
The bottom SCCs of the reachability graph are the maximal SCCs with respect to <.

Proposition 3.1.1 Let (N,M0) be a bounded Petri net. (N,M0) is live iff for every

bottom SCC of the reachability graph of (N,M0) and for every transition t, some

marking of the SCC enables t.

Proof. Follows easily from the definitions. �

The condition of Proposition 3.1.1 can be checked in linear time using Tarjan’s algo-

rithm, whch computes all the SCCs of a directed graph in linear time. The algorithm

can be easily adapted to compute the bottom SCCs.

3.1.1 Complexity

A 1-bounded Petri net with n may have up to 2n reachable markings. Therefore,

all algorithms based on the construction of the reachability graph have exponential

worst-case runtime. Using Savitch’s theorem it is also easy to show that they are in

35

36 CHAPTER 3. DECISION PROCEDURES

PSPACE. For example, the following polynomial-memory nondeterministic program

solves Reachability. The program stores a marking M , initially M := M0 (since the

net is 1-bounded, this only needs linear space in the size of the net). While M is dif-

ferent from the goal marking, it nondeterministically chooses a transition t enabled at

M , computes the marking M ′ such that M
t
−→M ′, and sets M := M ′.

We now show that the problems are PPSPACE-complete. We do so by means of

a universal lower bound for the complexity of deciding whether a 1-bounded Petri net

satisfies an interesting behavioural property:

Rule of thumb 1:

All interesting questions about the behaviour of 1-bounded Petri nets

are PSPACE-hard.

Notice that a rule of thumb is not a theorem. There are behavioural properties of

1-bounded Petri nets that can be solved in polynomial time. For instance, the question

“Is the initial marking a deadlock?” can be answered very efficiently; however, it is

so trivial that hardly anybody would consider it really interesting. So a more careful

formulation of the rule of thumb would be that all questions described in the literature

as interesting are at least PSPACE-hard. Here are 14 examples:

• Is the Petri net live?

• Is some reachable marking a deadlock?

• Is a given marking reachable from the initial marking?

• Is there a reachable marking that puts a token in a given place?

• Is there a reachable marking that does not put a token in a given place?

• Is there a reachable marking that enables a given transition?

• Is there a reachable marking that enables more than one transition?

• Is the initial marking reachable from every reachable marking?

• Is there an infinite run?

• Is there exactly one run?

• Is there a run containing a given transition?

• Is there a run that does not contain a given transition?

• Is there a run containing a given transition infinitely often?

• Is there a run which enables a transition infinitely often but contains it only

finitely often?

We need some preliminaries.

3.1. DECISION PROCEDURES FOR 1-BOUNDED PETRI NETS 37

Turing machines. In the paper we use single tape Turing machines with one-way

infinite tapes, i.e., the tape has a first but not a last cell. For our purposes it suf-

fices to consider Turing machines starting on empty tape, i.e., on tape containing

only blank symbols. So we define a (nondeterministic) Turing machine as a tuple

M = (Q,Γ, δ, q0, F), where Q is the set of states, Γ the set of tape symbols (contain-

ing a special blank symbol), δ : (Q×Γ)→ P(Q×Γ×{R,L}) the transition function,

q0 the initial state, and F the set of final states. The size of a Turing machine is the

number of bits needed to encode its transition relation.

Linearly and exponentially bounded automata. We work several times with Tur-

ing machines that can only use a finite tape fragment, or equivalently, with Turing

machines whose tape has both a first and a last cell. We call them bounded automata.

If a bounded automaton tries to move to the right from the last tape cell it just stays in

the last cell.

A function f : N→ N induces the class of f(n)-bounded automata, which contains

for all k ≥ 0 the bounded automata of size k that can use f(k) tape cells. Notice that we

deviate from the standard definition, which says that an automaton is f(n)-bounded if

it can use at most f(k) tape cells for an input word of length k. Since we only consider

bounded automata working n empty tape, the standard definition is not appropriate for

us. When f(n) = n we get the class of linearly bounded automata.

The PSPACE-hardness of all these problems is a consequence of one single funda-

mental fact.

A linearly bounded automaton of size n can be simulated by a 1-

bounded Petri net of size O(n2). Moreover, there is a polynomial time

procedure which constructs this net.

The notion of simulation used here is very strong: a 1-bounded Petri net simulates

a Turing machine if there is bijection f between configurations of the machine and

markings of the net such that the machine can move from a configuration c1 to a con-

figuration c2 in one step if and only if the Petri net can move from the marking f(c1)
to the marking f(c2) through the firing of exactly one transition.

Let A = (Q,Γ,Σ, δ, q0, F) be a linearly bounded automaton of size n. The compu-

tations of M visit at most the cells c1, . . . , cn. Let C be this set of cells. The simulating

Petri net N(A) contains a place s(q) for each state q ∈ Q, a place s(c) for each cell

c ∈ C, and a place s(a, c) for each symbol a ∈ Γ and for each cell c ∈ C. A token

on s(q) signals that the machine is in state q. A token on s(c) signals that the machine

reads the cell c. A token on s(a, c) signals that the cell c contains the symbol a. The

total number of places is |Q|+ n · (1 + |Σ|).
The transitions of N(A) are determined by the state transition relation of A. If

(q′, a′, R) ∈ δ(q, a), then we have for each cell c a transition t(q, a, c) whose input

places are s(q), s(c), and s(a, c) and whose output places are s(q′), s(a′, c) and s(c′),
where c′ is the cell to the right of c (this signals that the tape head has moved to the

right) unless c is the last cell, in which case c′ = c. The last cell is an exception, because

38 CHAPTER 3. DECISION PROCEDURES

by assumption the machine cannot move to the right from there. If (q′, a′, L) ∈ δ(q, a)
then we add a similar set of transitions; this time the first cell is the exception. The

total number of transitions is at most 2 · |Q|2 · |Γ|2 · n, and so O(n2), because the size

of A is O(|Q|2 · |Γ|2).
The initial marking of N(A) puts one token on s(q0), on s(c1), and on the place

s(B, ci) for 1 ≤ i ≤ n, where B denotes the blank symbol. The total size of the Petri

net is O(n2).
It follows immediately from this definition that each move of A corresponds to

the firing of one transition. The configurations reached by A along a computation

correspond to the markings reached along its corresponding run. These markings put

one token in exactly one of the places {s(q) | q ∈ Q}, in exactly one of the places

{s(c) | c ∈ C}, and in exactly one of the places {s(a, c) | a ∈ Σ} for each cell c ∈ C.

So N(A) is 1-bounded.

In order to answer a question about a linearly bounded automaton A we can con-

struct the net N(A), which is only polynomially larger than A, and solve the corre-

sponding question about the runs of A. For instance, the question “does any of the

computations of A terminate?” corresponds to “has the Petri net N(A) a deadlock?”

It turns out that most questions about the computations of linearly bounded au-

tomata are PSPACE-hard. To begin with, the (empty tape) acceptance problem is

PSPACE-complete:

Given: a linearly bounded automaton A.

To decide: if A accepts the empty input.

Moreover, the PSPACE-hardness of this problem is very robust: it remains PSPACE-

complete if we restrict it to

• deterministic bounded automata,

• bounded automata having one single accepting state,

• bounded automata having one single accepting configuration.

Many other problems can be easily reduced to the acceptance problem in polyno-

mial time, and so are PSPACE-hard too. Examples are:

• does A halt?,

• does A visit a given state?,

• does A visit a given configuration?

• does A visit a given configuration infinitely often?

We obtain in this way a large variety of PSPACE-hard problems. Since N(A) is

only polynomially larger than A, all the corresponding Petri net problems are PSPACE-

hard as well. For instance, a reduction from the problem “does A ever visit a given

configuration?” proves PSPACE-hardness of the reachability problem for 1-bounded

Petri nets. Furthermore, once we have some PSPACE-hard problems for 1-bounded

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 39

Petri nets we can use them to obtain new ones by reduction. For instance, the follow-

ing problems can be easily reduced to the problem of deciding if there is a reachable

marking that puts a token on a given place:

• is there a reachable marking that concurrently enables two given transitions t1
and t2?

• can a given transition t ever occur?

• is there a run containing a given transition t infinitely often?

13 out of the 14 problems at the beginning of the section (and many others) can be

easily proved PSPACE-hard using these techniques. The liveness problem, the first in

our list, is a bit more complicated.

3.2 Decision procedures for general Petri nets

3.2.1 A decision procedure for Boundedness

The b-Boundednesss problem is clearly decidable: if the input Petri net (N,M0) has

n places, then the number of b-bounded markings of N is nb+1. So we can decide

b-Boundedness by constructing the reachability graph of (N,M0) until either the con-

struction terminates, or we find a reachable marking that is not b-bounded.

The same idea gives a semi-decision procedure for Boundedness: again, we con-

struct the reachability graph. If the input (N,M0) is bounded, then there are finitely

many reachable markings, the construction terminates, and we can return “bounded”.

However, if the net is unbounded then this procedure does not terminate.

We now give a decision procedure for Boundedeness. We need two lemmas. The

first one is a simple adaptation of König’s Lemma; the second is known as Dickson’s

Lemma.

Lemma 3.2.1 (Königs lemma) Let G = (V,E) be the reachability graph of a Petri

net (N,M0). If V is infinite, then G contains an infinite simple path.

Proof. Assume V = [M0〉 is infinite. For every reachable marking M there is a

simple path πM from M0 to M . Since M0 has finitely many immediate successors

(at most one for each transition of N), and each πM visits one of them, at least one

immediate successor M1 of M0 has infinitely many successors in (V \ {M0}, E), that

is, [M1〉 \ {M0} is infinite. Iterating this argument we construct an infinite simple path

M0M1M2 · · · . �

Lemma 3.2.2 (Dickson’s lemma) For every infinite sequence A1A2A3 . . . of vectors

of Nk there is an infinite sequence i1 < i2 < i3 . . . of indices such that Ai1 ≤ Ai2 ≤
Ai3

40 CHAPTER 3. DECISION PROCEDURES

Proof. By induction on k
Basis: k = 1. Then the elements of A are just numbers. The set {A1, A2, · · · } has

a minimum, say c1. Choose i1 as some index (say, the smallest), such that Ai1 = c1.

Consider now the set {Ai1+1, Ai1+2, · · · }. The set has a minimum c2, which by defi-

nition satisfies c1 ≤ c2. Choose i2 as the the smallest index i2 > i1 such that Ai2 = c2.

Etc.

Step: k > 1. Given a vector Ai, let A′
i be the vector of dimension k − 1 consisting

of the first k − 1 components of Ai, and let ai be the last component of Ai. We write

Ai = (A′
i | ai).

Since the vectors of A′
1A

′
2A

′
3 · · · have dimension k − 1, by induction hypothesis

there is an infinite subsequence A′
i1
≤ A′

i2
≤ A′

i3
· · · . Consider now the sequence

ai1ai2ai3 · · · . By induction hypothesis there is a subsequence aj1 ≤ aj2 ≤ aj3 · · · .
But then we have Aj1 ≤ Aj2 ≤ Aj3 · · · , and we are done. �

Remark: Lemma 3.2.2 shows that the partial order≤⊆ Nk×Nk is a well-quasi-order.

Given a set A, and a partial order �⊆ A × A, we say that � is a well-quasi-order if

every infinite sequence a1a2a3 · · · ∈ Aω contains an infinite chain ai1 � ai2 � · · · . In

the next section we examine well-quasi-orders in more detail.

We use König’s Lemma and Dickson’s lemma to provide the following characteri-

zation of unboundedness.

Theorem 3.2.3 (N,M0) is unbounded iff there are markings M and L such that L 6=

0 and M0
∗
−→M

∗
−→ (M + L)

Proof. (⇐) : Assume there are such markings M,L. By the Monotonicity Lemma we

have

M1
∗
−→ (M1 + L)

∗
−→ (M1 + 2 · L)

∗
−→ . . .

So the set [M0〉 of reachable markings is infinite and (N,M0) is unbounded.

(⇒) Assume (N,M0) is unbounded. Then the set [M0〉 of reachable markings is in-

finite. By Königs lemma there is an infinite firing sequence M0
t1−→ M1

t1−→ M2 . . .
that never visits a marking twice. By Dickson’s Lemma there are Mi and Mj such that

M0
∗
−→Mi

∗
−→Mj and Mi ≤Mj . Let M ≡Mi and L ≡Mj −Mi. �

Theorem 3.2.4 Boundedness is decidable.

Proof. We give an algorithm that always terminates and always returns the correct

answer: “ bounded” or “unbounded”. The algorithm explores the reachability graph

of the net using breadth-first search. After adding a new marking M ′, the algorithm

checks if the part of the graph already constructed contains a sequence M0
∗
−→M

∗
−→

M ′ such that M ≤ M ′ (and M 6= M ′, because M ′ is new). The algorithm terminates

if it finds such a sequence, in which case it returns “unbounded”, or if it cannot add any

new marking, in which case it returns “bounded”.

If (N,M0) is bounded, then by Theorem 3.2.3 the algorithm never finds a new

marking M ′ satisfying the condition above. So, since the Petri net has only finitely

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 41

many reachable markings, the algorithm terminates because it cannot find any new

marking, and correctly returns “bounded”.

If (N,M0) is unbounded, then there are infinitely many reachable markings, and

the algorithm cannot terminate because it runs out of reachable markings. On the other

hand, by Theorem 3.2.3 the algorithm eventually finds markings M ′ and M as above,

and so it correctly answers “unbounded”. �

3.2.2 Decision procedures for Coverability

The reachability graph of a Petri net can be infinite, in which case the algorithm for

computing the reachability graph will not terminate. Therefore, the algorithm cannot

decide that a given marking is not coverable. In this section we introduce several

decision procedures that overcome this problem.

Coverability graphs

We show how to construct a coverability graph of a Petri net (N,M0). the coverability

graph is always finite, and satisfies the folloiwng property: a marking M of (N,M0)
is coverable iff some node M ′ of the coverability graph of (N,M0) covers M , i.e.,

satisfies M ′ ≥M .

We introduce a new symbol ω. Intuitively, it stands for an arbitrarily large number.

We extend the arithmetic on natural numbers with ω as follows. For all n ∈ N:

n+ ω = ω + n = ω,

ω + ω = ω,

ω − n = ω,

0 · ω = 0
n ≥ 1⇒ n · ω = ω · n = ω,

n ≤ ω and ω ≤ ω.

Observe that ω − ω remains undefined, but we will not need it.

We extend the notion of markings to ω-markings. An ω-marking of a net N =
(S, T, F) is a mapping M : S → N ∪ {ω}. Intuitively, in an ω-marking, each place s
has either a certain number of tokens or “arbitrarily many” tokens.

The enabledness condition and the firing rule neatly extend to ω-markings with

the extended arithmetic rules: recall that a transition t is enabled at a marking M if

M(s) > 0 for every s ∈ •t. Now M(s) > 0 may hold because M(s) = ω. Further,

recall that if t is enabled, then it can fire, leading from M to the marking M ′ given by:

M ′(s) =

M(s)− 1 if s ∈ •t \ t•

M(s) + 1 if s ∈ t• \ •t
M(s) otherwise

If s ∈ •t ∪ t• and M(s) = ω, then we have M ′(s) = ω. That is, if a place contains

ω tokens, then firing a transition will not change its number of tokens, even if the

transition is connected with an arc to the place.

42 CHAPTER 3. DECISION PROCEDURES

M t1 t2 ... tn M’ t1 t2 ... tn M’’

= =

∆Μ ∆Μ
Μ+∆Μ Μ+2∆Μ

...

=
...

Figure 3.1: Pumping tokens.

COVERABILITY-GRAPH((P, T, F,M0))
1 (V,E, v0) := ({M0}, ∅,M0);
2 Work : set := {M0};
3 while Work 6= ∅
4 do select M fromWork ;
5 Work := Work \ {M};
6 for t ∈ enabled(M)
7 do M ′ := fire(M, t);
8 M ′ := AddOmegas(M, t,M ′, V, E);
9 if M ′ /∈ V

10 then V := V ∪ {M ′}
11 Work := Work ∪ {M ′};
12 E := E ∪ {(M, t,M ′)};
13 return (V,E, v0);

ADDOMEGAS(M, t,M ′, V, E)
1 for M ′′ ∈ V
2 do if M ′′ < M ′ and M ′′ ∗

−→E M
3 then M ′ := M ′ + ((M ′ −M ′′) · ω);
4 return M ′;

Figure 3.2: Algorithm for the construction of the coverability graph

Assume M ′ ∈ [M〉 and M ≤ M ′. Then there is some sequence of transitions

t1t2 . . . tn such that M
t1t2...tn−−−−−−→M ′. By the Monotonicity Lemma, there is a marking

M ′′ with M ′ t1t2...tn−−−−−−→M ′′. Further, if we denote ∆M := M ′ − M , then M ′′ =
M ′+∆M = M +2∆M (see Figure 3.1). By firing the transition sequence t1t2 . . . tn
repeatedly we can “pump” an arbitrary number of tokens to all the places s for which

∆M(s) > 0.

The main idea for the construction of the coverability graph is to replace the mark-

ing M ′ by the ω-marking M ′ + ω · ∆M . The algorithm is shown in Figure 3.2. The

following notations are used in the AddOmegas subroutine:

• M ′′−→E M iff (M ′′, t,M) ∈ E for some t ∈ T .

• M ′′ ∗
−→E M iff ∃n ≥ 0: ∃M0,M1, . . . ,Mn : M

′′ = M0 →E M1 →E M2 →E

· · · →E Mn = M .

Observe that COVERABILITY-GRAPH is very similar to REACHABILITY-GRAPH,

it just adds a call to subroutine AddOmegas(M, t,M ′, V, E). Line 3 causes all places

whose marking in M ′ is strictly larger than in the “parent” M ′′ to contain ω, while

markings of other places remain unchanged.

We show that COVERABILITY-GRAPH terminates, and that a markingM of (N,M0)
is coverable iff some node M ′ of the coverabilitygraph of (N,M0) covers M , i.e., sat-

isfies M ′ ≥M

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 43

Theorem 3.2.5 COVERABILITY-GRAPH terminates.

Proof. Assume that COVERABILITY-GRAPH does not terminate. We derive a con-

tradiction. If COVERABILITY-GRAPH does not terminate, then it constructs an infinite

graph. Since every node of the graph has at most |T | successors, by König’s lemma

the graph contains an infinite path Π = M1M2 If an ω-marking Mi of Π satisfies

Mi(p) = ω for some place p, then Mi+1(p) = Mi+2(p) = . . . = ω. So Π con-

tains a marking Mj such that all markings Mj+1,Mj+2, . . . have ω’s at exactly the

same places as Mj . Let Π′ be the suffix of Π starting at Mj . Consider the projection

Π′′ = mjmj+1 . . . of Π′ onto the non-ω places. Let n be the number of non-ω places.

Π′′ is an infinite sequence of distinctn-tuples of natural numbers. By Dickson’s lemma,

this sequence contains markings Mk,Ml such that k < l and Mk ≤Ml. This is a con-

tradiction, because, since Mk 6= Ml, when executing AddOmegas(Ml−1, t,Ml, V, E)
the algorithm adds at least one ω to Ml−1. �

For the rest of the proof we start with a lemma.

Lemma 3.2.6 For every ω-marking M ′ added by the algorithm to V and for every

k > 0, there there is a reachable marking M ′
k satisfying M ′

k(s) = M ′(s) for every

place s such that M ′(s) ∈ N, and M ′
k(s) > k for every place s such that M ′(s) = ω.

Proof. We prove that if all ω-markings added so far to V satisfy the property, then the

next one also does. Assume the algorithm currently explores markingM and transition

t, and let M
t
−→M1. By induction hypothesis, for every k > 0, there there is a reach-

able marking Mk satisfying Mk(s) = M(s) for every place s such that M(s) ∈ N,

and Mk(s) > k for every place s such that M(s) = ω. If AddOmegas does not add

any ωs, then we can take M ′
k as the result of firing t from Mk. Assume AddOmegas

finds a unique ω-marking M ′′ such that M ′′ ∗
−→E M

t
−→M1 and M ′′ < M1. Then the

marking M ′ added by the algorithm is M ′ = M1 + ((M1 −M ′′) · ω. Let σ be such

that M ′′ σ
−→M

t
−→M1. By induction hypothesis, for every k > 0 there is a reachable

marking M ′′
k satisfying M ′′

k (s) = M ′′(s) for every place s such that M ′′(s) ∈ N,

and M ′′
k (s) > k for every place s such that M ′′(s) = ω. Starting from a sufficiently

large k, the marking M ′′
k enables σt (for instance, take k = |σt|, since σ t can re-

move at most |σt| tokens from a place), and we have M ′′
k

σt
−−→M1k with M ′′

k > M1k.

Let M ′
k be the marking obtained by firing (σ t)k from M ′′

k . Then for every place s
such that M ′′(s) > M1(s) we have M ′

k(s) > k. Since these are the places s for which

M1(s) < ω and M ′(s) = ω, we have that M ′
k(s) > k for every s such that M ′(s) = ω.

If AddOmegas finds several ω-markings M ′′ such that M ′′ ∗
−→E M

t
−→M1, we re-

peat the argument above. �

Theorem 3.2.7 Let (N,M0) be a Petri net and let M be a marking of N . There is

a reachable marking M ′ ≥ M iff the coverability graph of (N,M0) contains an ω-

marking M ′′ ≥M .

44 CHAPTER 3. DECISION PROCEDURES

Proof. (⇒): Assume there is a reachable marking M ′ ≥ M . Then some firing

sequence

M0
t1−−→M1

t2−−→M2 · · ·Mn−1
tn−−→M ′

of (N,M0) leads from M0 to M ′. By the definition of the algorithm, the coverability

graph contains a path

M0
t1−−→M ′

1
t2−−→M ′

2 · · ·Mn−1
tn−−→M ′

n

such that M ′
i ≥Mi for every 1 ≤ i ≤ n. Take M ′′ = M ′

n.

(⇐): Assume the coverability graph of (N,M0) contains an ω-marking M ′′ ≥M .

By Lemma 3.2.6, there is a reachable marking M ′′
k satisfying M ′′

k (s) = M ′′(s) for

every place s such that M ′′(s) ∈ N, and M ′′
k (s) > k for every place s such that

M ′′(s) = ω. Take k larger than any of the components of M , and set M ′ = M ′′
k . Then

clearly M ′ ≥M . �

Rackoff’s algorithm

Definition 3.2.8 (Vector addition system) A vector addition system (VAS) is a pair

(v,A), where v ∈ Zk for some k ≥ 0, and A ⊆ Zk is a finite addition set. A finite

sequence of vectorsw1w2 · · ·wm ofZk is a path of (v,A) if w1 = v andwi+1−wi ∈ A
for every 1 ≤ i ≤ m.

Let (N,M0) be a Petri net where N = (S, T, F) and S = {s1, . . . , sk). The VAS of

(N,M0) is the VAS (M0, AN), where AN contains a vector vt ∈ Z for every transition

t ∈ T given by:

vt(i) =

−1 if s ∈ •t \ t•

1 if s ∈ t• \ •t
0 otherwise

for every 1 ≤ i ≤ k.

Definition 3.2.9 (Integer nets) Let N = (S, T, F) be a net. A generalized marking

of N (g-marking for short) is a mapping G : S → Z. An integer net is a pair (N,G0)
where N is a net and G0 is a g-marking. A g-marking G enables all transitions, and

the occurrence of t at G leads to the marking G′ given by

G′(s) =

G(s)− 1 if s ∈ •t \ t•

G(s) + 1 if s ∈ t• \ •t
G(s) otherwise

We denote by G
t
→֒ G′ that firing t at G yields to G′.

An integer firing sequence of an integer net is a sequenceG0
t1
→֒ G1

t2
→֒ · · ·

tn
→֒ Gm.

Clearly, every Petri net is also an integer net, and every firing squence is also an

integer firing sequence, but the converse does not hold.

In the rest for the section we fix a net N with places {s1, . . . , sk}, and identify

g-markings with vectors of Zk .

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 45

Definition 3.2.10 Let G ∈ Zk be a g-marking of N and let 0 ≤ i ≤ k. We say that

G is i-natural if its first i-components are natural numbers, i.e., if G(j) ≥ 0 for every

1 ≤ j ≤ i. If moreover G(j) < r for every 1 ≤ j ≤ i, then we say that G is

(i, r)-natural.

An integer sequence σ = G0
t1
→֒ · · ·

tm
→֒ Gm is i-natural ((i, r)-natural)if every

generalized marking of σ is i-natural ((i, r)-natural). Given a g-marking G ∈ Zk, we

say that σ is (i, G)-covering if Gm(j) ≥ G(j) for every 1 ≤ j ≤ i.

Intuitively, G is i-natural if its restriction to the first i places is a marking, and σ
is i-natural if its restriction to the first i places is a firing sequence. So, in particular,

deciding if M is coverable in a Petri net (N,M0) is equivalent to deciding if (N,M0)
has a (k,M)-covering sequence.

We prove the following result:

Theorem 3.2.11 Let n = max(k,
∑k

i=1 |G(i)|). For every G0 ∈ Zk, if (N,G0) has

an (i, G)-covering sequence, then it has one of length at most 2(3 logn)log n

.

The proof follows easily from the following lemma:

Lemma 3.2.12 For every G0 ∈ Zk and for every 1 ≤ i ≤ k, if (N,G0) has an (i, G)-
covering sequence, then it has one of length at most f(i), where f is inductively defined

as follows:

• f(0) = 1, and

• f(i) = (nf(i− 1))i + f(i− 1) for every 1 ≤ i < k − 1.

Proof The proof is by induction on i.
Base: i = 0. Follows vacuously from the fact that there are no (0, G)-covering se-

quences.

Step: i > 0. Assume (N,G0) an (i, G)-covering sequence. We consider two cases:

Case 1: (N,G0) has an (i, G)-covering, (i, nf(i− 1))-natural sequence.

Assume the sequence is

σ = G0
t1
→֒ · · ·

tm
→֒ Gm

and assume further that it has minimal length.

We claim that G0, G1, . . . , Gm are pairwise different. Assume the contrary: there

exist α < β such that Gα(j) = Gβ(j) for every 1 ≤ j ≤ i. Then the sequence

σ′ = G0
t1
→֒ · · ·

tα−1

−−−−→Gα

tβ+1

→֒ G′
β+1

tβ+2

→֒ · · ·
tm
→֒ G′

m

is also (i, G)-covering and (i, nf(i − 1))-natural, contradicting the minimality of σ.

This proves the claim.

Since σ is (i, nf(i − 1))-natural, for every g-marking G′ appearing in σ we have

0 ≤ G′(j) < nf(i − 1) for every 1 ≤ j ≤ i . By the definition of n, there are at most

(nf(i))i+1 different g-markings G′ satisfying 0 ≤ G′(j) < nf(i − 1). By the claim

46 CHAPTER 3. DECISION PROCEDURES

above the length of σ is at most (nf(i))i+1.

Case 1: (N,G0) has no (i, G)-covering, (i, nf(i− 1))-natural sequence.

Then there is an (i, G)-covering sequence that is not (i, nf(i − 1))-natural. Let this

sequence be

σ = G0
t1
→֒ G1

t2
→֒ · · ·Gm−1

tm
→֒ Gm

Let Gα+1 be the first vector of σ that is not (i, nf(i − 1))-natural. Without loss of

generality, we can assume Gα+1 ≥ nf(i− 1). Then the prefix

G0
t1
→֒ · · ·

tα
→֒ Gα

is (i, Gα)-covering and (i, nf(i− 1))-natural. As in the previous case, we can assume

α ≤ (nf(i− 1))i+1.

Since

Gα

tα
→֒ Gα+1

tα+1

→֒ · · ·
tm
→֒ Gm

is an (i − 1, G)-covering and (i − 1)-natural sequence of (N,Gα+1), by induction

hypothesis there exists another (i − 1, G)-covering and (i− 1)-natural sequence

Gα+1
u1

→֒ H1
u2

→֒ · · ·
uℓ
→֒ Hℓ

of (N,Gα+1) of length at most f(i − 1), that is, ℓ ≤ f(i − 1). Since Gα+1(i) ≥
nf(i− 1), and a sequence of length f(i− 1) can remove at most f(i− 1) tokens from

the place si, after the execution of the new sequence the number of tokens in si is still

nonnegative. So the sequence

σ′ = G0
t1
→֒ · · ·

tα
→֒ Gα

tα+1

→֒
u1

→֒ H1
u2

→֒ · · ·
uℓ

→֒ Hℓ

is an (i, G)-covering and i-natural sequence of (N,G0) of length at most (nf(i))i+1+
f(i). �

We can now proceed to prove Theorem 3.2.11:

ProofOf Theorem 3.2.11. Define g(0) = n and g(i) = (g(i − 1))2 logn for every

1 ≤ i ≤ k ≤ logn. Observe that g(i) ≥ n for every i ≥ 0. We prove f(i) ≤ g(i) for

every 0 ≤ i ≤ log n by induction on i. For i = 0 we have f(0) = 1 ≤ n = g(0). For

i > 0 we have

f(i) = (nf(i− 1))i

≤ (ng(i− 1))logn

≤ nlogng(i− 1)logn

≤ g(i− 1)logng(i− 1)logn

= g(i)

By Lemma 3.2.12, if (N,G0) has a (k,G)-covering sequence, then it has one of length

at most g(k) = n2k log n. �

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 47

The backwards-reachability algorithm

Definition 3.2.13 (Upward-closed sets of markings)

A set M of markings of a net N is upward closed if M ∈ M and M ′ ≥ M imply

M ′ ∈M.

A marking M of an upward closed setM is minimal if there is no M ′ ∈ M such

that M ′ ≤M and M ′ 6= M .

Observe that an upward closed set is completely determined by its minimal ele-

ments: two upwards closed sets are equal iff their sets of minimal elements are equal.

Lemma 3.2.14 Every upward-closed set of markings has finitely many minimal ele-

ments.

Proof. Assume M is upward closed and has infinitely many minimal markings

M1,M2, By Dickson’s Lemma there are i 6= j such that Mi ≤ Mj . But then

Mj is not minimal. �

An important consequence of the lemma is that every upwards closed set can be

finitely represented by its set of minimal elements.

Definition 3.2.15 LetM be a set of markings of a net N = (S, T, F), and let t ∈ T
be a transition. We define

pre(M, t) = {M ′ |M ′ t
−→M for some M ∈ M}

pre(M) =

∞
⋃

t∈T

pre(M, t)

and further

pre0(M) = M

prei+1(M) = pre
(

prei(M)
)

for every i ≥ 0

pre∗(M) =
∞
⋃

i=0

prei(M)

Lemma 3.2.16 IfM is upward closed, then pre(M) is also upward closed.

Proof. Let M ′ ∈ pre(M). We have to prove that M ′ + M ′′ ∈ pre(M) holds for

every marking M ′′.

Since M ′ ∈ pre(M) there is M ∈ M and a transition t such that M ′ t
−→M . By

the firing rule we have M ′ + M ′′ t
−→M + M ′′ for every marking M ′′. Since M is

upward closed, we have M +M ′′ ∈M. Since M ′ +M ′′ t
−→M +M ′′, we finally get

M ′ +M ′′ ∈ pre(M). �

48 CHAPTER 3. DECISION PROCEDURES

Theorem 3.2.17 LetM be an upward-closed set of markings of a net N . Then there

is i ≥ 0 such that

pre∗(M) =

i
⋃

j=0

prej(M)

Proof. By Lemma 3.2.16, prej(X) is upward closed for every i ≥ 0. Since a (finite

or infinite) union of upward-closed sets is upward closed, pre∗(M) is upward closed

as well.

By Lemma 3.2.14, the set m∗ of minimal markings of pre∗(M) is finite. therefore,

there exists an index i such that m∗ ⊆
⋃i

j=0 pre
j(M). Since this union is upward

closed, we get pre∗(M) ⊆
⋃i

j=0 pre
j(M), and therefore, by definition of pre∗(M),

we have pre∗(M) =
⋃i

j=0 pre
j(M). �

BACK1((P, T, F,M))
1 M := {M ′ |M ′ ≥M};
2 Old M := ∅;
3 while true

4 do Old M :=M;
5 M :=M∪ pre(M);
6 if M0 ∈M
7 then return covered end

8 ifM = Old M
9 then return not covered end

BACK2((P, T, F,M))
1 m := {M};
2 old m := ∅;
3 while true

4 do old m := m;
5 m := min(m ∪

⋃

t∈T pre(min(M[t])));
6 if ∃M ′ ∈ m : M0 ≥M ′

7 then return covered end

8 if m 6= old m

9 then return not covered end

Figure 3.3: Backwards reachability algorithm.

This theorem leads to the algorithm on the left of of Figure 3.3. However, this

version is not yet directly implementable, because it manipulates infinite sets. For each

operation (union and pre) or test (the testsM 6= Old M and M0 /∈ M of the while-

loop), we have to supply an implementation that uses only the finite representation of

the set, that is, its set of minimal elements.

Given a set M, let min(M) denote the set of minimal elements of M. Given a

transition t and a marking M , let M [t] be the marking that puts one token in each

output place of t, and no tokens elsewhere, and letM[t] = {M ∈M |M ≥M [t]}.
Observe that ifM is upward closed, then so isM[t]. We have (exercise):

• M ∈ M iff there exists M ′ ∈ min(M) such that M0 ≥M ′.

• M1 =M2 iff min(M1) = min(M2).

• min(M1 ∪M2) = min(min(M1) ∪min(M2)).

• min(pre(M, t)) = pre(min(M[t])).

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 49

To compute min(M[t]), we need another definition. Given two markings M1,M2, let

M1 ∧M2 be the marking defined by (M1 ∧M2)(s) = max{M1(s),M2(s)} for every

place s. Then we have

min(M[t]) = {M ′ ∧M [t] |M ′ ∈ min(M)}

Using these observations, we obtain the implementable version shown on the right

of Figure 3.3.

The abstract backwards-reachability algorithm

The backwards reachability algorithm can be reformulated in more general terms,

which allows to apply it to other models of concurrency more general than Petri nets.

This is an important advantage of the backwards reachability algorithm over the cover-

ability graph technique.

Definition 3.2.18 Given a set A, and a partial order �⊆ A × A, we say that � is a

well-quasi-order (wqo) if every infinite sequence a1a2a3 · · · ∈ Aω contains an infinite

chain ai1 � ai2 � · · · (where i1 < i2 < i3 . . .).

Here are some examples of well-quasi-orders:

• The pointwise order≤ on Nk.

• The subword order on Σ∗ for any finite alphabet Σ.

We say w1 � w2 if w1 is a scattered subword of w2, that is, if w1 can be obtained

from w2 by deleting letters. Higman’s lemma states that every infinite sequence

of words contains an infinite chain with respect to the subword order.

• The subtree order on the set of finite trees over a finite alphabet Σ.

We say that t1 � t2 if there is an injective mapping from the nodes of tree t1
into the nodes of t2 that preserves reachability: n′ is reachable from n in t1 iff

the image of n′ is reachable from the image of n in t2. Kruskal’s lemma states

that every infinite sequence of trees contains an infinite chain with respect to the

subtree order.

Definition 3.2.19 Let A be a set and let � A × A be a wqo. A set X ⊆ A is upward

closed if x ∈ X and x � y implies y ∈ X for every x, y ∈ A. In particular, given

x ∈ A, the set {y ∈ A | y � x} is upward-closed.

A relation→⊆ A × A is monotonic if for every x → y and every x′ � x there is

y′ � y such that x′ → y′.
Given X ⊆ A, we define

pre(X) = {y ∈ A | y → x and x ∈ X}

Further we define:

pre0(X) = X

prei+1(X) = pre
(

prei(X)
)

for every i ≥ 0

pre∗(X) =

∞
⋃

i=0

prei(X)

50 CHAPTER 3. DECISION PROCEDURES

Theorem 3.2.20 Let A be a set and let � A×A be a wqo. Let X0 ⊆ A be an upward

closed set and let→⊆ A×A be monotonic. Then there is j ∈ N such that

pre∗(X) =

j
⋃

i=0

prei(X)

This theorem can be used to obtain a backwards reachability algorithm for gener-

alizations of Petri nets, like reset Petri nets, or lossy channel systems, whose transition

relation is monotonic. Other net models, like Petri nets with inhibitor arcs, do not

have a monotonic transition relations (adding tokens may disable a transition), and the

theorem cnanot be appiled to them . In fact we have:

Theorem 3.2.21 Deadlock freedom, Liveness, Boundedness, b-boundedness, Reach-

ability, and Coverability are all undecidable for Petri nets with inhibitor arcs.

3.2.3 Decision procedures for other problems

Reachability

The decidability of Reachability was open for about 10 years until it was proved by

Mayr in 1980. Kosaraju and Lambert simplied the proof in 1982 and 1992, respectively.

All these algorithms and their proofs exceed the framework of this course.

In 2012 Leroux provided a new, very simple algorithm. Its proof is as complicated

as the proofs of the previous ones, but the algorithm is very simple to described.

Definition 3.2.22 (Semilinear set) A set X ⊆ Nk is linear if there is r ∈ Nk (the

root) and a finite set P ⊆ Nk (the periods) such that

X = {r +
∑

p∈P

λpp

A semilinear set is a finite union of linear sets.

Observe that a semilinear set can be finitely represented as a set of pairs {(r1, P1), . . . , (rn, Pn)}
giving the roots and periods of its linear sets.

Theorem 3.2.23 [Leroux 12] Let (N,M0) be a Petri net and let M be a marking of

M . If M is not reachable from M0, then there exists a semilinear setM of markings

of N such that

(a) M0 ∈ M,

(b) if M ∈M and M
t
−→M ′ for some transition t of N , then M ′ ∈M, and

(c) M /∈ M.

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 51

Given the root r and periods p1, . . . , pn of a semilinear set M, we can check

whetherM satisfies (a)-(c). Indeed, checking (a) amounts to solving the linear sys-

tem of diophantine equations

M0 = r +

n
∑

i=1

λipi

with unknowns λ1, . . . , λn. Similarly, checking (c) amounts to showing that

M = r +

n
∑

i=1

λipi

has no solution. Finally, checking (b) is more complicated, but reduces to checking

validity of a formula of a theory called Presburger arithmetic for which decision pro-

cedures exist.

Now, Theorem 3.2.23 can be used to give an algorithm for Reachability consisting

of two semi-decision procedures, one that explores the reachability graph breadth-first

and stops if it finds the goal markingM , and another one that enumerates all semilinear

sets, and stops if one of them satisfies (a)-(c). The two procedures run in parallel,

and, ince one of the two is bound to terminate, yield together a decision procedure for

Reachability.

Deadlock-freedom

Now we reduce Deadlock-freedom to Reachability. We proceed in two stapes. First,

we reduce Deadlock-freedom to an auxiliary problem P, and then we reduce P to

reachability.

P: Given a Petri net (N,M0) and a subset R of places of N , is there a

reachable marking M such that M(s) = 0 for every s ∈ R?

Theorem 3.2.24 Deadlock-freedom can be reduced to P.

Proof. Let (N,M0) be a Petri net such that N = (S, T, F). Define

S = {R ⊆ S | ∀t ∈ T : •t ∩R 6= ∅}

that is, an element of S contains for every transition t at least on ef the input places of

t. We have

(1) S is a finite set..

(2) A marking M of N is dead iff the set of places unmarked at N is an Element of

S.

Suppose now that there is an algorithm that decides P. We can then decide Deadlock-

freedom as follows. For every R ∈ S we use the algorithm for P to decide if some

reachable marking M satisfies M(s) = 0 for every s ∈ R. It follos from (2) that

(N,M0) is deadlock-free if the answer is negative in all cases. Since, by (1), we only

have to solve a finite number of instances of P, Deadlock-freedom is decidable. �

52 CHAPTER 3. DECISION PROCEDURES

Theorem 3.2.25 P can be reduced to Reachability.

Proof. Let (N,M0) be a Petri net where N = (S, T, F), and let R be a set of places

of N . We construct a new Petri net (N ′,M ′
0) by adding new places, transitions, and

arcs to (N,M0). We proceed in two steps (see Figure 3.4):

sn

.

.

..

..

..

t1 tm

ts1

T

..
. .

..
..

..

.

S \R

t0 r0s0

N

tsn

s1

Figure 3.4: Construction of Theorem 3.2.25

• Add two new places s0 and r0. Put one token on s0.

• Add a transition t0 and arcs (s0, t0) and (t0, r0).

• For every transition t ∈ T , add two arcs (s0, t) und (t, s0).

While s0 remains marked, all transitions of T can fire. However, transition t0
can occur at any time, and when this happens all transitions of T become “dead”.

Intuitively, the firing of t0 “freezes” (N,M0).

• For every place s ∈ S\R add a new transition ts and arcs (s, ts), (r0, ts), (ts, r0).

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 53

If r0 is marked, then the ts transitions can occur. These transitions “empty” the

places of S \R.

This concludes the definition of (N ′,M ′
0).

Let Mr0 be the marking of N ′ that puts one token on r0 and no tokens elsewhere.

We have

(1) If some reachable marking M of (N,M0) puts no tokens in R, then Mr0 is a

reachable marking of (N ′,M ′
0).

To reach Mr0 we first fire transiitons of T to reach M , then we fire t0, and finally

we fire ts transitions until S is empty.

(2) If Mr0 is a reachable marking of (N ′,M ′
0), then some marking M reachable

from (N,M0) puts no tokens in R.

Mr0 can only be reached by firing t0 at a marking that puts no tokens in R
(because after firing t0 the places of R cannot be emptied anymore). So we can

choose M as the marking reached immediately before firing t0.

By (1) and (2), we can decide if some reachable marking M of (N,M0) puts no

tokens in R as follows: construct (N ′,M ′
0) and decide if Mr0 is reachable. therefore,

if there is an algorithm for Reachability, then there is also one for P. �

Liveness

Liveness can also be reduced to Reachability, but the proof is mre complex. We sketch

the reduction for the problem whether a given transition t of a Petri net (N,M0) is live.

Let Et be the set of markings of N that enable t. Clearly, Et is upward closed.

By Lemma 3.2.16, the set pre∗(Et) is also upward closed. Now, pre∗(Et) is the set

of markings of N that enable some firing sequence ending with t. Let Dt be the

complement of pre∗(Et), that is, the set of markings from which t cannot be enabled

anymore. We have: (N,M0) is live iff [M0〉 ∩Dt = ∅.
If Dt is a finite set of markings, and we are able to compute it, then we are done:

we have reduced the liveness problem to a finite number of instances of Reachability.

However, the set Dt may be infinite, and we do not yet know how to compute it. We

show how to deal with these problems.

Every upward-closed set of markings is semilinear (exercise). Using the backwards

reachability algorithm, we can compute the finite set min(pre∗(Et)), and from it we

can compute a representation of pre∗(Et) as a semilinear set. Now we use a powerful

result: the complement of a semilinear set is also semilinear; moreover, there is an

algorithm that, given a representation of a semilinear set X ⊆ Nk, computes a repre-

sentation of the complement Nk \X . So we are left with the problem: given a Petri net

(N,M0) and a semilinear set X , decide if some marking of X is reachable from M0.

This problem can be reduced to Reachability as follows (brief sketch). We con-

struct a Petri net that first simulates (N,M0), and then transfers control to another Petri

net which nondeterministically generates a marking of X on “copies” of the places of

N . This second net then transfers control to a third, whose transitions remove one to-

ken from a place of N and a token from its “copy”. If X is reeachble, then the first

54 CHAPTER 3. DECISION PROCEDURES

net can produce a marking of X , the second net can produce the same marking, and

the thrid net can then remove all tokens from the first and second nets, reaching the

empty marking. Conversely, if the net consisting of the three nets together can reach

the empty marking, then (N,M0) can reach somemarking of X .

3.2.4 Complexity

Unfortunately, all the algorithms we have seen so far have very high complexity: we

prove that all of them are EXPSPACE-hard. That is, the memory needed by any algo-

rithm solving one of these problems necessarily grows exponentially in the size of the

input Petri net. Rackoff’s algorithm shows that Boundedness is EXPSPACE-complete,

and the same can be proved for Coverability. It is conjectured that the same holds for

Deadlock-freedom, Liveness, and Reachability, but so far no proof has been found.

The known algorithms for this problem have extremely high complexity: there is no

promitive-recursive bound for their memory requirements. To understand what this

means, define inductively the functions expk(x) as follows:

• exp0(x) = x;

• expk+1(x) = 2expk(x).

The worst-case time and space complexity of the known algorithms for these three

problems grows faster as expk for every k ≥ 0!!

The rest of the section is the counterpart of Section 3.1.1 for arbitrary Petri nets.

The rule of thumb is now:

Rule of thumb 6:

All interesting questions about the behaviour of Petri nets are EXPSPACE-

hard. More precisely, they require at least 2O(
√
n)-space.

In particular, all the questions we asked about 1-safe Petri nets can be reformulated

for Petri nets, and turn out to have at least this space complexity. As in the case of

1-safe Petri nets, this is a consequence of one single fundamental fact:

A deterministic, exponentially bounded automaton of size n can be simulated

by a Petri net of size O(n2). Moreover, there is a polynomial time procedure

which constructs this net.

In order to answer a question about the computation of an exponentially space

bounded automatonA, we can construct the net that simulatesA, which has size O(n2),
and solve the corresponding question. If the original question requires 2n space, as is

the case for many properties, then the corresponding question about nets requires at

least 2O(
√
n)-space.

Bounded automata and general Place/Transition Petri nets do not “fit” well. It is not

appropriate to model a cell of a bounded automaton as a place, as we did in the 1-safe

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 55

case, because the cell contains one out of a finite number of possible symbols, while the

place can contain infinitely many tokens, and so the same information as a nonnegative

integer variable. So we use an intermediate model, namely counter programs. It is

well-known that so-called bounded counter programs can simulate bounded automata

(see below), and we show that Petri nets can simulate bounded counter programs.

A counter program is a sequence of labelled commands separated by semicolons.

Basic commands have the following form, where l, l1, l2 are labels or addresses taken

from some arbitrary set, for instance the natural numbers, and x is a variable over the

natural numbers, also called a counter:

l: x := x+ 1
l: x := x− 1
l: goto l1 unconditional jump

l: if x = 0 then goto l1 conditional jump

else goto l2
l: halt

A program is syntactically correct if the labels of commands are pairwise different,

and if the destinations of jumps correspond to existing labels. For convenience we can

also require the last command to be a halt command.

A program can only be executed once its variables have received initial values. In

this paper we assume that the initial values are always 0. The semantics of programs

is that suggested by the syntax. The only point to be remarked is that the command

l : x := x − 1 fails if x = 0, and causes abortion of the program. Abortion must be

distinguished from proper termination, which corresponds to the execution of a halt

command. Observe in particular that counter programs are deterministic.

A counter program C is k-bounded if after any step in its unique execution the

contents of all counters are smaller than or equal to k. We make use of a well known

construction of computability theory:

There is a polynomial time procedure which accepts a deterministic

bounded automaton A of size n and returns a counter program C with

O(n) commands simulating the computation of A on empty tape; in

particular, A halts if and only if C halts. Moreover, if A is exponen-

tially bounded, then C is 22
n

-bounded.

Now, it suffices to show that a 22
n

-bounded counter program of size O(n) can be

simulated by a Petri net of size O(n2). This is the goal of the rest of this section.

Since a direct description of the sets of places and transitions of the simulating

net would be very confusing, we introduce a net programming notation with a very

simple net semantics. It is very easy to obtain the net corresponding to a program, and

execution of a command corresponds exactly to the firing of a transition. So we can

and will look at the programming notation as a compact description language for Petri

nets.

56 CHAPTER 3. DECISION PROCEDURES

A net program is rather similar to a counter program, but does not have the possi-

bility to branch on zero; it can only branch nondeterministically. However, it has the

possibility of transferring control to a subroutine. The basic commands are as follows:

l: x := x+ 1
l: x := x− 1
l: goto l1 unconditional jump

l: goto l1 or goto l2 nondeterministic jump

l: gosub l1 subroutine call

l: return end of subroutine

l: halt

Syntactical correctness is defined as for counter programs. We also assume that

programs are well-structured. Loosely speaking, a program is well-structured if it can

be decomposed into a main program that only calls first-level subroutines, which in

turn only call second-level subroutines, etc., and the jump commands in a subroutine

can only have commands of the same subroutine as destinations.1 We do not formally

define well-structured programs, it suffices to know that all the programs of this section

are well-structured.

We sketch a (Place/Transition) Petri net semantics of well-structured net programs.

The Petri net corresponding to a program has a place for each label, a place for each

variable, a distinguished halt place, and some additional places used to store the calling

address of a subroutine call. There is a transition for each assignment and for each

unconditional jump, and two transitions for each nondeterministic jump, as shown in

Figure 3.5. We illustrate the semantics of the subroutine command by means of the

program

1: gosub 4;

2: gosub 4;

3: halt;

4: goto 5 or goto 6;

5: return;

6: return

The corresponding Petri net is shown in Figure 3.6. Observe that the places 1 calls 4

and 2 calls 4 are used to remember the address from which the subroutine was called.

Clearly, the Petri net corresponding to a net program with k commands has O(k)
places and O(k) transitions, and its initial marking has size O(k). So it is of size

O(k2).
Let C be a 22

n

-bounded counter program with O(n) commands. We show that C
can be simulated by a net program N(C) with O(n) commands, which corresponds to

a Petri net of size O(n2). Unfortunately, the construction of N(C) requires quite a bit

of low-level programming. But the reward is worth the hacking effort.

The notion of simulation is not as strong as in the case of 1-safe Petri nets. In par-

ticular, net programs are nondeterministic, while counter programs are deterministic.

1Here we consider the main program as a zero-level subroutine, i.e., jump commands in the main program

can only have commands of the main program as destinations.

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 57

l

l l l

l

l l

l

l l l halt

l

l l

x x

1

1 1 2

1

1 1

: x:=x+1;
: ...

: x:=x-1;
: ...

l: goto l l: haltl: goto l
 or
 goto l

11

2

Figure 3.5: Net semantics of assignments and jumps

58 CHAPTER 3. DECISION PROCEDURES

1

2

3

halt

return_4

4

5 6

1_calls_4

2_calls_4

Figure 3.6: Net semantics of subroutines

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 59

A net program N simulates a counter program C if the following property holds: C
halts (executes the command halt) if and only if some computation of N halts (other

computations may fail).

Each variable x of N (be it a variable from C or an auxiliary variable) has an

auxiliary complement variable x. N takes care of setting x = 22
n

at the beginning of

the program. We call the code that takes care of this Ninit(C).2 The rest of N(C),
called Nsim(C), simulates C and takes care of keeping the invariant x = 22

n

− x.

We design Nsim(C) first. This program is obtained through replacement of each

command of C by an adequate net program. Commands of the form x := x+ 1 (x :=
x−1) are replaced by the net program x := x+1;x := x−1 (x := x−1;x := x+1).

Unconditional jumps are replaced by themselves. Let us now design a program

Testn(x,ZERO, NONZERO)

to replace a conditional jump of the form

l: if x = 0 then goto ZERO

else goto NONZERO

The specification of Testn is as follows:

If x = 0 (1 ≤ x ≤ 22
n

), then some execution of the program leads

to ZERO (NONZERO), and no computation leads to NONZERO (ZERO);

moreover the program has no side-effects: after any execution leading to

ZERO or NONZERO no variable has changed its value.

Actually, it is easier to design a program Test′n(x,ZERO, NONZERO) with the same

specification but a side-effect: after an execution leading to ZERO, the values of x and

x are swapped.3 Once Test′n has been designed, we can take:

Program Testn(x, ZERO, NONZERO):

Test′n(x, continue, NONZERO);

continue: Test′n(x, ZERO, NONZERO)

because the values of x and x are swapped 0 times if x > 0 or twice if x = 0, and so

Testn has no side effects.

The key to the design of Test′n lies in the following observation: Since x never

exceeds 22
n

, testing x = 0 can be replaced by nondeterministically choosing

• to decrease x by 1, and if we succeed then we know that x > 0, or

• to decrease x by 22
n

, and if we succeed then we know that x = 22
n

, and so

x = 0.

2Recall that by definition all variables of N have initial value 0. Therefore, if we need x = 2
2
n

initially,

then we have to design preprocessing code for it.
3Executions leading to NONZERO must still be free of side-effects.

60 CHAPTER 3. DECISION PROCEDURES

If we choose wrongly, that is, if for instance x = 0 holds and we try to decrease x by

1, then the program fails; this is not a problem, because we only have to guarantee that

the program may (not must!) terminate, and that if it terminates then it provides the

right answer.

Decreasing x by 1 is easy. Decreasing x by 22
n

is the difficult part. We leave it for

a routine Decn to be designed, which must satisfy the following specification:

If the initial value of s is smaller than 22
n

, then every execution of Decn
fails. If the value of s is greater than or equal to 22

n

, then all execu-

tions terminating with a return command have the same effect as s :=
s − 22

n

; s := s + 22
n

; in particular, there are no side-effects. All other

executions fail.

Test′n proceeds by transferring the value of x to a special variable sn, and then calling

the routine Decn, which decreases sn by 22
n

. In this way we need one single rou-

tine Decn, instead of one for each different variable to be decreased, which leads to a

smaller net program.

Program Test′n(x, ZERO, NONZERO):

** initially sn = 0 and sn = 22
n

**

goto nonzero or goto loop;

nonzero: x := x− 1; x := x+ 1; goto NONZERO;

loop: x := x− 1; x := x+ 1; sn := sn + 1; sn := sn − 1;

goto exit or goto loop

exit: gosub decn; goto ZERO

** the routine called at decn is Decn(sn) **

It is easy to see that Test′n meets its specification: if x > 0, then we may choose

the nonzero branch and reach NONZERO. If x = 0, then x = 22
n

. After looping

22
n

times on loop the values of x, x and sn, sn have been swapped. The values of

sn and sn are swapped again by the subroutine Decn, and then the program moves to

ZERO. Moreover, if x = 0 then no execution reaches the NONZERO branch, because

the program fails at x := x− 1. If x > 0, then no execution reaches the ZERO branch,

because sn cannot reach the value 22
n

, and so Decn fails.

The next step is to design Decn. We proceed by induction on n, starting with Dec0.

This is easy, because it suffices to decrease s by 22
0

= 2. So we can take

Subroutine Dec0(s):

s := s− 1; s := s+ 1;

s := s− 1; s := s+ 1;

return

Now we design Deci+1 under the assumption that Deci is already known. The defini-

tion of Deci+1 contains two copies of a program Test′i, called with different parameters.

We define this program by substituting i for n everywhere in Test′n. Test′i calls the rou-

tine Deci at the address deci. Notice that this is correct, because we are assuming that

the routine Deci has already been defined.

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 61

The key to the design of Deci+1 is that decreasing by 22
i+1

amounts to decreasing

22
i

times by 22
i

, because

22
i+1

= (22
i

)2 = 22
i

· 22
i

So decreasing by 22
i+1

can be implemented by two nested loops, each of which is

executed 22
i

times, such that the body of the inner loop decreases s by 1. The loop

variables have initial values 22
i

, and termination of the loops is detected by testing the

loop variables for 0. This is done by the Test′i programs.

Subroutine Deci+1(s):

** Initially yi = 22
i

= zi, yi = 0 = zi **

** The initialisation is carried out by Ninit **

outer loop: yi := yi − 1; yi := yi + 1;

inner loop: zi := zi − 1; zi := zi + 1;

s := s− 1; s := s+ 1;

Test′i(zi, inner exit , inner loop);

inner exit: Test′i(yi, outer exit, outer loop);

outer exit: return

Observe also that both instances of Test′i call the same routine at the same label.

It could seem that Deci+1 swaps the values of yi, yi and zi, zi, which would be

a side-effect contrary to the specification. But this is not the case. These swaps are

compensated by the side-effects of the ZERO branches of the Test′i programs! Notice

that these branches are now the inner exit and outer exit branches. When the

program leaves the inner loop, Test′i swaps the values of zi and zi. When the program

leaves the outer loop, Test′i swaps the values of yi and yi.
This concludes the description of the program Testn, and so the description of the

program Nsim(C). It remains to design Ninit(C). Let us first make a list of the

initialisations that have to be carried out. Nsim(C) contains

• the variables x1, . . . , xl of C with initial value 0; their complementary variables

x1, . . . , xl with initial value 22
n

;

• a variable s with initial value 0; its complementary variable s with initial value

22
n

;

• two variables yi, zi for each i, 0 ≤ i ≤ n − 1, with initial value 22
i

; their

complementary variables yi, zi for each i, 0 ≤ i ≤ n− 1, with initial value 0.

Now, the specification of Ninit(C) is simple

Ninit(C) uses only the variables in the list above; every successful execu-

tion leads to a state in which the variables have the correct initial values.

Ninit(C) calls programs Inci(v1, . . . , vm) with the following specification:

All successful executions have the same effect as

62 CHAPTER 3. DECISION PROCEDURES

v1 := v1 + 22
i

;

. . . ;

vm := vm + 22
i

In particular, there are no side-effects.

These programs are defined by induction on i, and are very similar to the family of

Deci programs. We start with Inc0:

Program Inc0(v1, . . . , vm):

v1 := v1 + 1; v1 := v1 + 1;

. . .

vm := vm + 1; vm := vm + 1

and now give the inductive definition of Inci+1:

Program Inci+1(v1, . . . , vm):

** Initially yi = 22
i

= zi, yi = 0 = zi **

outer loop: yi := yi − 1; yi := yi + 1;

inner loop: zi := zi − 1; zi := zi + 1;

v1 := v1 + 1;

. . .

vm := vm + 1;

Test′i(zi, inner exit , inner loop);

inner exit: Test′i(yi, outer exit, outer loop);

outer exit: . . .

It is easy to see that these programs satisfy their specifications. Now, let us consider

Ninit(C). Apparently, we face a problem: in order to initialise the variables v1, . . . , vm
to 22

i+1

the variables yi and zi must have already been initialised to 22
i

! Fortunately,

we find a solution by just carrying out the initialisations in the right order:

Program Ninit(C):

Inc0(y0, z0);

Inc1(y1, z1);

. . .

Incn−1(yn−1, zn−1);

Incn(s, x1, . . . , xl)

This concludes the description of N(C), and it is now time to analyse its size.

Consider Nsim(C) first. It contains two assignments for each assignment of C, an

unconditional jump for each unconditional jump in C, and a different instance of Testk
for each conditional jump. Moreover, it contains (one single instance of) the routines

Decn, Decn−1, . . . , Dec0 (notice that Testn calls Decn, which calls Decn−1, etc.). Both

Testn and the routines have constant length. So the number of commands of Nsim(C)
is O(n).

3.2. DECISION PROCEDURES FOR GENERAL PETRI NETS 63

Ninit(C) contains (one single instance of) the programs Inci 1 ≤ i ≤ n. The

programs Inc1, . . . , Incn−1 have constant size, since they initialise a constant number of

variables. The number of commands of Incn is O(n), since it initialises O(n) variables.

So we have proved that N(C) contains O(n) commands. It follows that its corre-

sponding Petri net has size O(n2), which concludes our presentation of Lipton’s result.

64 CHAPTER 3. DECISION PROCEDURES

Chapter 4

Semi-decision procedures

4.1 Linear systems of equations and linear program-

ming

In the next two sections we will construct linear systems of equations with integer or

rational coefficients that provide partial information about our analysis problems. We

will prove propositions like “if the system of equations A · X ≤ b (we will see how

this system looks like) has a rational positive solution, then the Petri net (N,M0) is

bounded” (sufficient condition), or “if M is reachable in (N,M0), then the system of

equations B · X = b has a solution over the natural numbers” (necessary condition).

Such propositions lead to semi-decision procedures to prove or disprove a property.

The complexity of these procedures depends on the complexity of solving the different

systems of equations.

We define the size of a linear system of equations A ·X = b or A · X ≤ b where

A = (aij)i=1,...n,j=1,...,m and b = (bj)j=1,...,m as

∑

{log2|aij | | 1 ≤ i ≤ n, 1 ≤ j ≤ m}+
∑

{log2|bj | | 1 ≤ j ≤ m}

The problem of deciding whether A ·X = b has

• a rational solution can be solved in polynomial time (though not by means of

Gauss elimination!).

• an integer solution can be solved in polynomial time.

• a nonnegative integer solution is NP-complete.

The problem of deciding whether A ·X ≤ b has

• a rational solution can be solved in polynomial time. 1

1In practice we often use the Simplex algorithm, which has exponential worst-case complexity, but is

very efficient for most instances.

65

66 CHAPTER 4. SEMI-DECISION PROCEDURES

• an integer solution is NP-complete.

• a nonnegative integer solution is NP-complete.

Given a linear objective function f(X) = c1x1 + . . . cm we can decide with the same

runtime whether there is a solution Xop that maximizes f(X) and, if so, the value

f(Xop).

4.2 The Marking Equation

Definition 4.2.1 (Incidence matrix)

Let N = (S, T, F) be a net. The incidence matrix N : (S × T)→ {−1, 0, 1} is given

by

N(s, t) =

0 if (s, t) 6∈ F and (t, s) 6∈ F or

(s, t) ∈ F and (t, s) ∈ F
−1 if (s, t) ∈ F and (t, s) 6∈ F
1 if (s, t) 6∈ F and (t, s) ∈ F

The column N(−, t) is denoted by t, and the row N(s,−) by s.

Example 4.2.2 s5

t2

s3

t1

t4t3

s4

s1 s2

t1 t2 t3 t4
s1 −1 0 1 0
s2 −1 0 0 1
s3 1 −1 0 0
s4 0 1 −1 0
s5 0 1 0 −1

Definition 4.2.3 (Parikh-vector of a sequence of transitions)

Let N = (S, T, F) be a net and let σ be a finite sequence of transitions. The Parikh-

vector ~σ : T → IN von σ is defined by

~σ(t) = number of occurrences of t in σ

Lemma 4.2.4 (Marking Equation Lemma)

Let N be a net and let M
σ
−→M ′ be a firing sequence of N . Then M ′ = M +N · ~σ.

4.2. THE MARKING EQUATION 67

Proof. By induction on the length of σ.

Basis: σ = ǫ. Then M = M ′ and ~σ = 0
Step: σ = τt for some sequence τ and transition t. Let M

τ
−→ L

t
−→M ′. We have

M ′ = L+ t (Definition of t)

= L+N · ~t (Definition of ~t)

= M +N · ~τ +N · ~t (Induction hyp.)

= M +N · (~τ + ~t)

= M +N · ~τt (Definition of Parikh-vector)

= M +N · ~σ (σ = τt)

�

Example 4.2.5 In the previous net we have (11000)
t1t2t3
−−→ (10001), and

1
0
0
0
1

=

1
1
0
0
0

+

−1 0 1 0
−1 0 0 1
1 −1 0 0
0 1 −1 0
0 1 0 −1

·

1
1
1
0

The marking reached by firing a sequence σ from a marking M depends only on

the Parikh-vector ~σ. In other words, if M enables two sequences σ and τ with ~σ = ~τ ,

then both σ and τ lead to the same marking.

Definition 4.2.6 (The Marking Equation)

The Marking Equation of a Petri net (N,M0) is M = M0 +N ·X with variables M
and X .

The Marking equation leads to the following semi-algorithms for Boundedness,

b-Boundedness, (Non)-Reachability, and Deadlock-freedom:

Proposition 4.2.7 (A sufficient condition for boundedness)

Let (N,M0) be a Petri net. If the optimization problem

maximize
∑

s∈S

M(s)

subject to M = M0 +N ·X

has an optimal solution, then (N,M0) is bounded.

Proof. Let n be the optimal solution of the problem. Then n ≥
∑

s∈S

M(s) holds for

every marking M for which there exists a vector X such that M = M0 + N · X .

By Lemma 4.2.4 we have n ≥
∑

s∈S

M(s) for every reachable marking M , and so

n ≥M(s) for every reachable marking M and every place s. �

Exercise: Change the algorithm so that it checks whether a given place is bounded.

68 CHAPTER 4. SEMI-DECISION PROCEDURES

Proposition 4.2.8 (A sufficient condition for non-reachability)

Let (N,M0) be a Petri net and let L be a marking of N . If the equation

L = M0 +N ·X (with only X as variable)

has no solution, then L is not reachable from M0.

Proof. Immediate consequence of Lemma 4.2.4. �

Proposition 4.2.9 (A sufficient condition for deadlock-freedom)

Let (N,M0) be a 1-bounded Petri net where N = (S, T, F). If the following system of

inequations has no solution then (N,M0) is deadlock-free.

M = M0 +N ·X
∑

s∈·t
M(s) < |•t| for every transition t.

Proof. We show: if there is a reachable dead marking M , then M is a solution

of the system. By Lemma 4.2.4 and the reachability of M there is a vector X sat-

isfying M = M0 + N · X . Since (N,M0) is 1-bounded, we have M(s) ≤ 1 for

every place s. Let t be an arbitrary transititon. Since M does not enable t, we have

M(s) = 0 for at least one place s ∈ •t. Since M does not enable any transition, we

get
∑

s∈·t
M(s) < |•t|. �

Remark 4.2.10 The converses of these propositions do not hold (that is why they are

semi-algorithms!). Counterexamples are:

• To Proposition 4.2.7:

s2

t1

s1 t1
s1 0
s2 1

(N,M0) ist bounded but

(

0

n

)

=

(

0

0

)

+

(

0

1

)

· n

for every n (that is, the Marking Equation has a solution for every marking of

the form (0, n)).

• To Proposition 4.2.8:

Peterson’s algorithm: the marking (p4, q4,m1 = true,m2 = true, hold = 1)
ist not reachable, but the Marking Equation has a solution (Exercise: find a

smaller example).

4.3. S- AND T-INVARIANTS 69

s2s1

t1 t2 t3

s4s3

Figure 4.1

• To Proposition 4.2.9:

Peterson’s algorithm with an additional transition t satisfying •t = {p4, q4}
and t• = ∅. The Petri net is deadlock free, but the Marking Equation has a

solution for (m1 = true,m2 = true, hold = 1) that satisfies the conditions of

Proposition 4.2.9 (Exercise: find a smaller example).

4.3 S- and T-invariants

4.3.1 S-invariants

Definition 4.3.1 (S-invariants)

Let N = (S, T, F) be a net. An S-invariant of N is a vector I : S → Q such that

I ·N = 0.

Proposition 4.3.2 (Fundamental property of S-invariants)

Let (N,M0) be a Petri net and let I be a S-invariant of N . If M0
∗
−→ M , then

I ·M = I ·M0.

Proof. We have M0
σ
−→ M for some firing sequence σ. By the Marking Equation

Lemma we get

M = M0 +N · ~σ

and so

I ·M = I ·M0 + I ·N · ~σ (Marking Equation)

= I ·M0 (I ·N = 0)

�

The value of the expression I ·M is therefore the same for every reachable marking

M , and so it constitutes an invariant of (N,M0).

Example 4.3.3 We compute the S-invariants of the net of Figure 4.1

70 CHAPTER 4. SEMI-DECISION PROCEDURES

The incidence matrix is:

t1 t2 t3
s1 1 −1 0
s2 0 −1 1
s3 −1 1 0
s4 0 1 −1

We compute the solutions of the system of equations

(i1, i2, i3, i4) ·

1 −1 0
0 −1 1
−1 1 0
0 1 −1

= 0

The general form of the S-invariants is therefore (x, y, x, y) with x, y ∈ Q

The following propositions are an immediate consequence of the definition of S-

invariants:

Proposition 4.3.4 The S-invariants of a net form a vector space over the real numbers.

This definition of S-invariant is very suitable for machines, but not for humans,

who can only solve very small systems of equations by hand. There is an equivalent

definition which allows people to decide, even for nets with several dozens of places,

if a given vector is an S-invariant.

Proposition 4.3.5 I is an S-invariant of N = (S, T, F) iff. ∀t ∈ T :
∑

s∈•t

I(s) =
∑

s∈t•
I(s).

Proof. I ·N = 0 is equivalent to I ·t = 0 for every transition t. So for every transition

t we have: I · t =
∑

s∈t•
I(s)−

∑

s∈•t

I(s). �

Example 4.3.6 We show that I = (1, 1, 2, 1) is an S-invariant of the net of Figure 4.2.

The condition of Proposition 4.3.5 must hold for transitions t1, t2 und t3.

• Transition t1: I(s1) + I(s2) = I(s3) = 2.

• Transition t2: I(s3) = I(s1) + I(s4) = 2.

• Transition t3: I(s3) = I(s4) + I(s2) = 2.

With the help of S-invariants we can give sufficient conditions for boundedness and

necessary conditions for liveness and for the reachability of a marking.

Definition 4.3.7 (Semi-positive and positive S-invariants)

Let I be an S-invariant of N = (S, T, F). I is semi-positive if I ≥ 0 and I 6= 0, and

positive if I > 0 (that is, if I(s) > 0 for every s ∈ S). The support of an S-invariant is

the set 〈I〉 = {s ∈ S | I(s) > 0}.

4.3. S- AND T-INVARIANTS 71

s3

s1

t3

s4

t2

t1

s2

Figure 4.2

Proposition 4.3.8 [A sufficient condition for boundedness]

Let (N,M0) be a Petri net. If N has a positive S-invariant I , then (N,M0) is bounded.

More precisely: (N,M0) is n-bounded for

n = max

{

I ·M0

I(s)
| s is a place of N

}

Proof. Let M be any reachable marking. By the fundamental property of S-invariants

we have I ·M = I ·M0.

Let s be an arbitrary place of N . Since I > 0 we have I(s) ·M(s) ≤ I ·M = I ·M0

and M(s) ≤ I·M0

I(s) . �

Proposition 4.3.9 [A necessary condition for liveness]

If (N,M0) is live, then I ·M0 > 0 for every semi-positive S-invariant of N .

Proof. Let I be a semi-positive S-invariant and let s be a place of 〈I〉. Since (N,M0)
is live, some reachable marking M satisfies M(s) > 0. Since I is semi-positive, we

have I ·M ≥ I(s) ·M(s) > 0. Since I is a S-invariant, we get I ·M0 = I ·M > 0 �

These two propositions lead immediately to semi-algorithms for Boundedness and

Liveness.

Definition 4.3.10 (The ∼ relation)

Let M and L be markings and let I be a S-invariant of a net N . M und L agree on I
if I ·M = I · L. We write M ∼ L if M and L agree on all invariants of N .

Proposition 4.3.11 [A necessary condition for reachability]

Let (N,M0) be a Petri net. M ∼M0 holds for every M ∈ [M0〉.

72 CHAPTER 4. SEMI-DECISION PROCEDURES

Proof. Follows from the fundamental property of S-invariants. �

The following theorem allows one to decide if M ∼ L holds for two given markings

M and L.

Theorem 4.3.12 Let N be a net and let M,L be two markings of N .

M ∼ L iff the equation M = L+N ·X has a rational solution.

Proof. (⇒): Since M ∼ L, we have I · (L −M) = 0 for every S-invariant I .

We now recall a well-known theorem of linear algebra. Given a n ×m matrix A,

let U = {u ∈ Nn | u · A = 0}, and let V = {v ∈ Nm | u · v = 0 for every u ∈ U}.
Then both U and V are vector spaces, and the columns of A contain a basis of V .

If we take A := N, then U is the set of S-invariants of N , and so, by the theorem,

the columns of N contain a basis of the vector space of vectors v satisfying I ·v = 0 for

every S-invariant I . In particular, since (L−M) is one of these vectors, (L−M) is a

linear combination over Q of the columns of N, and so the equation N ·X = (L−M)
has a rational solution.

(⇐) : Let I be an S-invariant of N . Since I ·N = 0 we have I ·L = I ·M+I ·N ·X =
I ·M . �

We also have the following consequences:

M is reachable from L
6⇑ ⇓

M = L+N ·X has a solution X ∈ N|T |

6⇑ ⇓
M = L+N ·X has a solution X ∈ Q|T |

m
M ∼ L

4.3.2 T-invariants

Definition 4.3.13 (T-invariants)

Let N = (S, T, F) be a net. A vector J : T → Q is a T-invariant of N if N · J = 0.

Proposition 4.3.14 J is a T-invariant of N = (S, T, F) iff ∀s ∈ S :
∑

t∈•s

J(t) =
∑

t∈s•
J(t).

Proposition 4.3.15 [Fundamental property of T-invariants]

Let N be a net, let M be a marking of N , and let σ be a sequence of transitions of N
enabled at M . The vector ~σ is a T-invariant of N iff M

σ
−→M .

Proof. (⇒) : Let M ′ be the marking satisfying M
σ
−→M ′. By the Marking Equation

we have M ′ = M +N · ~σ. Since N · ~σ = 0 we get M ′ = M

(⇐) : By the Marking Equation we have M = M +N · ~σ and so N · ~σ = 0. �

4.4. SIPHONS AND TRAPS 73

Example 4.3.16 We compute the T-invariants of the net of Figure 4.1 as the solutions

of the system of equations

1 −1 0
0 −1 1
−1 1 0
0 1 −1

j1
j2
j3

 = 0

The general form of the T-invarints is (x, x, x), where x ∈ Q.

Using T-invariants we obtain a necessary condition for well-formedness of a net:

Theorem 4.3.17 [Necessary condition for well-formedness]

Every well-formed net has a positive T-invariant.

Proof. Let N be a well-formed net and let M0 be a live and bounded marking of N .

By liveness there is an infinite firing sequence σ1σ2σ3 · · · such that every σi is a finite

firing sequence containing all transitions of N . We have

M0
σ1−→M1

σ2−→M2
σ3−→ . . .

By boundedness there are indices i < j such that Mi = Mj . So the sequence

σi+1 . . . σj satisfies

Mi

σi+1...σj

−−→ Mi

and so J = ~σi+1 + . . .+ ~σj is a T-invariant of N . Further, J is positive because every

transition occurs at least once in σi+1 . . . σj . �

4.4 Siphons and Traps

4.4.1 Siphons

Definition 4.4.1 (Siphon)

Let N = (S, T, F) be a net. A set R ⊆ S of places is a siphon of N if •R ⊆ R•. A

siphon R is proper if R 6= ∅.

{s1, s2} is a siphon of the net of Figure 4.3 because

•{s1, s2} =
•s1 ∪

•s2 = {t2} ∪ {t1} = {t1, t2}

und

{s1, s2}
• = s•1 ∪ s•2 = {t1} ∪ {t2, t3} = {t1, t2, t3}

Proposition 4.4.2 [Fundamental property of siphons]

Let R be a siphon of a net N , and let M
σ
−→ M ′ be a firing sequence of N . If

M(R) = 0, then M ′(R) = 0.

74 CHAPTER 4. SEMI-DECISION PROCEDURES

t3

s3

t5t1

t2

s1

t4

s4s2

Figure 4.3

Proof. Since •R ⊆ R•, the transitions that can mark R can only occur at markings

that already mark R. �

Loosely speaking, a siphon that becomes unmarked (or “empty”), remains un-

marked forever.

Corollary 4.4.3 [A necessary condition for reachability]

If M is reachable in (N,M0), then for every siphon R, if M0(R) = 0 then M(R) = 0.

We can easily check in polynomial time if this condition holds. For this we first

observe that, if R1 and R2 are siphons of N , then so is R1 ∪ R2 (exercise). It follows

that there exists a unique largest siphon Q0 unmarked at M0 (more precisely, R ⊆ Q0

for every siphon R such that M0(R) = 0). We claim that the condition holds if and

only if M(Q0) = 0.

• If the condition holds, then, since M0(Q0) = 0 by definition, we get M(Q0) =
0.

• If the condition does not hold, then there is a siphon R such that M0(R) = 0 and

M(R) > 0. Since R ⊆ Q0, we also have M(Q0) > 0.

The siphon Q0 can be determined with the help of the following algorithm, which

computes the largest siphon Q contained in a given set R of places—it suffices then to

choose R as the set of places unmarked at M0.

Input: A net N = (S, T, F) and R ⊆ S.

Output: The largest siphon Q ⊆ R.

Initialization: Q := R.

begin

while there are s ∈ Q and t ∈ •s such that t /∈ Q• do

Q : = Q \ {s}
endwhile

end

4.4. SIPHONS AND TRAPS 75

Exercise: Show that the algorithm is correct. That is, prove that the algorithm

terminates, and that after termination Q is the largest siphon contained in R.

Proposition 4.4.4 [A necessary condition for liveness]

If (N,M0) is live, then M0 marks every proper siphon of N .

Proof. Let R be a proper siphon of N and let s ∈ R. Since we assume that N is

connected, •s ∪ s• 6= ∅, and, since R is a siphon, s• 6= ∅. Let t ∈ s• 6= ∅. By

liveness some reachable marking enables t, and so some reachable marking marks s,

and therefore also the siphon R. By Proposition 4.4.3 the initial marking M0 also

marks R. �

Again, the condition can be checked with the help of the algorithm above: the condition

holds if and only if Q0 = ∅. We now look at deadlock-freedom. We can obtain a

sufficient condition for it, but not one that is easy to check.

Proposition 4.4.5 If M is a dead marking of N , then the set of places unmarked at M
is a siphon of N .

Proof. Let R = {s | M(s) = 0}. For every transition t there is a place s ∈ •t such

that M(s) = 0 (otherwise t would be enabled). So R• contains all transitions of N ,

and therefore •R ⊆ R•. �

Corollary 4.4.6 [A sufficient condition for deadlock-freedom] Let (N,M0) be a Petri

net. If every reachable marking marks all siphons of N , then (N,M0) is deadlock-free.

4.4.2 Traps

Definition 4.4.7 (Trap)

Let N = (S, T, F) be a trap. A set R ⊆ S of places is a trap if R• ⊆ •R. A trap R is

proper if R 6= ∅.

{s3, s4} is a trap of the net of Figure 4.3.

Proposition 4.4.8 [Fundamental property of traps]

Let R be a trap of a net N and let M
σ
−→M ′ be a firing sequence of N . If M(R) > 0,

then M ′(R) > 0.

Proof. Since •R ⊆ •R, transitions that take tokens from R put tokens in R. �

So, loosely speaking, marked traps stay marked. Notice, however, that this does

not mean that the number of tokens of a trap cannot decrease. The number can go up

or down, just not become 0.

Corollary 4.4.9 [A necessary condition for reachability]

If M is reachable in (N,M0), then for every trap R, if M0(R) > 0 then M(R) > 0.

76 CHAPTER 4. SEMI-DECISION PROCEDURES

As in the case of siphons, we can check in polynomial time if this condition holds.

If R1 and R2 are traps of N , then so is R1 ∪ R2 (exercise). So there exists a unique

largest trap Q0 marked at M0 (more precisely, R ⊆ Q0 for every trap R such that

M(R) > 0). It is easy to see that the condition holds if and only if M0(Q0) > 0
(exercise).

To compute the largest trap unmarked at M , we can transform the algorithm that

computes the largest siphon contained in a given set of places into an algorithm for

computing the largest trap (exercise).

Recall that checking the sufficient condition for deadlock-freedom was computa-

tionally expensive, because of the form “for every reachable marking ...”. Combining

siphons and traps we obtain an easier-to-check condition.

Proposition 4.4.10 [A sufficient condition for deadlock-freedom]

Let (N,M0) be a Petri net. If every proper siphon of N contains a trap marked at M0,

then (N,M0) is deadlock-free.

Proof. Easy consequence of Corollary 4.4.6 and Proposition 4.4.8. �

The siphon-trap condition cannot be checked in polynomial time unless P=NP

(whether every proper siphon contains a marked trap is an NP-complete problem), but

can be checked with the help of a SAT-solver (see “New algorithms for deciding the

siphon-trap property” by O. Oanea, H. Wimmel, and K. Wolf).

We finally show how to combine S-invariants and traps to prove that Peterson’s

algorithm satisfies the mutual exclusion property. For the Petri net model of Figure 2.8

mutual exclusion means that no reachable marking M satisfies M(p4) ≥ 1∧M(q4) ≥
1. We first compute three S-invariants:

(1) M(hold = 1) +M(hold = 2) = 1

(2) M(p2) +M(p3) +M(p4) +M(m1 = f) = 1

(3) M(q2) +M(q3) +M(q4) +M(m1 = f) = 1

and two constraints derived from traps:

(4) M(m1 = f) +M(p2) +M(hold = 1) +M(q3) > 0

(5) M(m2 = f) +M(q2) +M(hold = 2) +M(p3) > 0

Assume now M(p4) ≥ 1 ∧M(q4) ≥ 1 holds. We have:

4.4. SIPHONS AND TRAPS 77

M(p4) ≥ 1 ∧M(q4) ≥ 1

⇒ {(2), (3)}

M(p2) +M(p3) +M(m1 = f) = 0 ∧ M(q2) +M(q3) +M(m2 = f) = 0

⇒ {(1)}

M(m1 = f) +M(p2)+ M(m2 = f) +M(q2)+
M(hold = 1) +M(q3) = 0 ∨ M(hold = 2) +M(p3) = 0

Contradicts (4) Contradicts (5)

78 CHAPTER 4. SEMI-DECISION PROCEDURES

Chapter 5

Petri net classes with efficient

decision procedures

In the three sections of this chapter we study three classes of Petri nets: S-systems,

T-systems, and free-choice systems. The sections have a similar structure. After the

definition of the class, we introduce three theorems: the Liveness, Boundedness, and

Reachability Theorem. The Liveness Theorem characterizes the live Petri nets in the

class. The Boundedness Theorem characterizes the live and bounded systems. The

Reachability Theorem characterizes the reachable markings of the live and bounded

systems. The proof of the theorems requires some results about the structure of S- and

T-invariants of the class, which we also present.

The theorems immediately yield decision procedures for Liveness, Boundedness

and Reachability whose complexity is much lower than those for general Petri nets.

At the end of the section we present a final theorem, the Shortest Path Theorem,

which gives an upper bound for the length of the shortest firing sequence leading to a

given reachable marking.

The reader may ask why boundedness only for live Petri nets, and why reachability

only for live and bounded Petri nets. A first reason is that, in many application areas,

a Petri net model of a correct system must typically be live and bounded, and so,

when one of these properties fails, it does not make much sense to further analyze

the model. The second reason is that, interestingly, the general characterization of the

bounded systems or the reachable markings is more complicated and less elegant than

the corresponding characterization for live or live and bounded Petri nets.

The proofs of the theorems are very easy for S-systems, a bit more involved for T-

systems, and relatively complex for free-choice systems. For this reason we just sketch

the proofs for S-systems, explain the proofs in some detail for T-systems, and omit

them for free-choice systems.

79

80CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

5.1 S-Systems

Definition 5.1.1 (S-nets, S-systems) A net N = (S, T, F) is a S-net if |•t| = 1 = |t•|
for every transition t ∈ T . A Petri net (N,M0) is a S-system if N if N is a S-net.

Proposition 5.1.2 (Fundamental property of S-systems)

Let (N,M0) be a S-system with N = (S, T, F). Then M0(S) = M(S) for every

reachable marking M .

Proof. Every transition consumes one token and produces one token. �

Theorem 5.1.3 [Liveness Theorem] A S-system (N,M0) where N = (S, T, F) is live

iff N is strongly connected and M0(S) > 0.

Proof. (Sketch.)

(⇒): If N is not strongly connected, then there is an arc (s, t) such that N has no path

from t to s. For every marked place s′ such that there is a path from s′ to s, we fire the

transitions of the path to bring the tokens in s′ to s, and then fire t to empty s. We have

then reached a marking from which no tokens can “travel” back to s, and so a marking

from which t cannot occur again. So (N,M0) is not live.

If M0 marks no places, then no transition can occur, and (N,M0) is not live.

(⇐): If N is strongly connected and M0 puts at least one token somewhere, then

the token can freely move, reach any other place, and so enable any transition again. �

Theorem 5.1.4 [Boundedness Theorem] A live S-system (N,M0) where N = (S, T, F)
is b-bounded iff M0(S) ≤ b.

Proof. Trivial. �

Exercise: give a counterexample for non-live S-systems.

Theorem 5.1.5 [Reachability Theorem] Let (N,M0) be a live S-system and let M be

a marking of N . M is reachable from M0 iff M0(S) = M(S).

Proof. N is strongly connected by Proposition 5.1.3. So we are free to distribute the to-

kens of M0 in an arbitrary way, and reach any marking M , as long as M(S) = M0(S).
�

Proposition 5.1.6 [S-invariants of S-nets] Let N = (S, T, F) be a connected net. A

vector I : S → Q is a S-invariant of N iff I = (x, . . . , x) for some x ∈ Q.

Proof.

Each transition t ∈ T has exactly one input place st and an output place s′t. So we

have
∑

s∈•t

I(s) = I(st) and
∑

s∈t•

I(s) = I(s′t)

5.2. T-SYSTEMS 81

and therefore

I is a S-invariant

⇔ {Proposition 4.3.5 (alternative definition of S-invariant)}
∀t ∈ T : I(st) = I(s′t)

⇔ {N is connected}
∀s1, s2 ∈ S : I(s1) = I(s2)

⇔ { }
∃x ∈ Q∀s ∈ S : I(s) = x.

�

5.2 T-systems

Definition 5.2.1 (T-nets, T-systems) A net N = (S;T, F) is a T-net if |•s| = 1 = |s•|
for every place s ∈ S. A system (N,M0) is a T-system if N is a T-net.

Notation: Let γ be a circuit of a net N and let M be a marking of N . We denote by

M(γ) the number if tokens of γ under M , that is, M(γ) =
∑

s∈γ M(s).

Proposition 5.2.2 (Fundamental property of T-systems) Let γ be a circuit of a T-

systems (N,M0) and let M be a reachable marking. Then M(γ) = M0(γ).

Proof. Firing a transition does not change the number of tokens of γ. If the transition

does not belong to the circuit, then the distribution of tokens in the circuit does not

change. If the transition belongs to the circuit, then it removes one token from a place

of the circuit, and adds a token to another place. The token count does not change. �

5.2.1 Liveness

Theorem 5.2.3 [Liveness Theorem] A T-system (N,M0) is live iff M0(γ) > 0 for

every circuit γ of N .

Proof.

(⇒) Let γ be a circuit with M0(γ) = 0. By Proposition 5.2.2 we have M(γ) = 0
for every reachable marking M . So no transition of γ can ever occur.

(⇐) Let t be an arbitrary transition and let M be a reachable marking. We show

that some marking reachable from M enables t. Let SM be the set of places s of N
satisfying the following property: there is a path from s to t that contains no place

marked at M . We proceed by induction on |SM |. Basis: |SM | = 0. Then M(s) > 0
for every place s ∈ • t, and so M enables t.
Step: |SM | > 0. By the fundamental property of T-systems, every circuit of N is

marked at M . So there is a path Π such that:

(1) Π leads to t;

82CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

(2) M marks no place of Π;

(3) Π has maximal length (that is, no path longer than Π satisfies (1) and (2)).

Let u be the first element of Π. By (3) u is a transition and M marks all places of
•u. So M enables u. Moreover, we have u 6= t because M does not enable t. Let

M
u
−→M ′. We show that SM ′ ⊂ SM , and so that |SM ′ | < |SM |.

1. SM ′ ⊆ SM

Let s ∈ SM ′ . We show s ∈ SM . There is a path Π′ = s . . . t containing no place

marked at M ′. Assume Π′ contains a place r marked at M . Since M ′(r) = 0

and M
u
−→ M ′ we have u ∈ r• and so {u} = r•. So u is the successor of r in

Π′. Since u 6= t, M ′ marks the successor of u in Π′, contradicting the definition

of Π′.

2. SM ′ 6= SM . Let s be the successor of u in Π. Then s ∈ SM but s 6∈ SM ′ ,

because M ′(s) > 0.

By induction hypothesis there is a firing sequence M ′ σ
−→ M ′′ such that M ′′ enables

t. It follows M
u
−→ M ′ σ

−→ M ′′, and so M ′′ is a marking reachable from M that

enables t. �

5.2.2 Boundedness

Theorem 5.2.4 [Boundedness Theorem] A place s of a live T-system (N,M0) is b-
bounded iff it belongs to some circuit γ such that M0(γ) ≤ b.

Proof. (⇐) Follows from the fundamental property of T-systems (Proposition 5.2.2).

(⇒) Let M be a reachable marking such that M(s) is maximal. We have M(s) ≤ b.
Define the marking L as follows:

L(r) =

{

M(r) if r 6= s
0 if r = s

We claim that (N,L) is not live. Otherwise there would be a firing sequence L
σ
−→ L′

such that L′(s) > 0, and by the Monotonicity Lemma we would have M
σ
−→ M ′ for

some marking M ′ satisfying M ′(s) = L′(s)+M(s) > M(s), contradicting the maxi-

mality of M(s). By the Liveness Theorem some circuit γ is unmarked at L but marked

at M . Since L and M only differ in the place s, the circuit γ contains s. Further, s
is the only place of γ marked at M . So M(γ) = M(s), and since M(s) ≤ b we get

M(γ) ≤ b. �

Corollary 5.2.5 Let (N,M0) be a live T-system

1. A place of N is bounded iff it belongs to some circuit.

5.2. T-SYSTEMS 83

2. Let s be a bounded place. Then

max{M(s) |M0
∗
−→M} = min{M0(γ) | γ contains s}

3. (N,M0) is bounded iff N is strongly connected.

Proof. Exercise �

5.2.3 Reachability

We need to have a closer look at the T-invariants of T-systems.

Proposition 5.2.6 [T-invariants of T-nets] Let N = (S, T, F) be a connected T-net. A

vector J : T → Q is a T-invariant iff J = (x . . . x) for some x ∈ Q.

Proof. Dual of the proof of Proposition 5.1.6. �

Theorem 5.2.7 [Reachability Theorem] Let (N,M0) be a live T-system. A marking

M is reachable from M0 iff M0 ∼M .

Proof. (⇒) Proposition 4.3.11

(⇐) By Theorem 4.3.12 there is a rational vector X such that

M = M0 +N.X (5.1)

The vector J = (1, 1, . . . , 1) is a T-invariant of N (Proposition 5.2.6). So we have

N · (X + λJ) = N ·X

for every λ ∈ Q. So without loss of generality we can assume X ≥ 0.

Let T be the set of transitions of N . We show:

(1) There is a vector Y : T → IN such that M = M0 +N · Y . Let Y be the vector

with Y (t) = ⌈X(t)⌉ for every transition t (⌈x⌉ denotes the smallest integer

larger than or equal to x). By (5.1) we have

M(s) = M0(s) +X(t1)−X(t2)

for every place s, where {t1} = •s and {t2} = s•. Both M(s) and M0(s) are

integers. By the definition of Y we get

X(t1)−X(t2) = Y (t1)− Y (t2)

So M(s) = M0 + Y (t1)− Y (t2), which implies M = M0 +N · Y .

84CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

(2) M0
∗
−→M

By induction over |Y | =
∑

t∈T Y (t).
Basis: |Y | = 0. Then Y = 0 and M = M0.

Step: |Y | > 0.

We show that M0 enables some transition of 〈Y 〉. Let

Sy = {s ∈ •〈Y 〉 |M0(s) = 0}

Let s ∈ Sy . By M0(s) = 0 and M0 +N · Y = M ≥ 0 we have:

if some transition of s• belongs to 〈Y 〉, then some transition of •s
belongs to 〈Y 〉. (*)

Let Π be a path of maximal length containing places of Sy and transitions of

〈Y 〉 (such a path exists, because otherwise N would contain a circuit unmarked

at M0). By (*), the first node of Π is a transition t ∈ 〈Y 〉, and no place of •t
belongs to Sy. So M0 marks every place of •t, that is, M0 enables t.

Let M0
t
−→M1. We have

M1 +N(Y − ~t) = M

where

|Y − ~t| = |Y | − 1 < |Y |

By induction hypothesis we have M1
∗
−→ M . Since M0

t
−→ M1

∗
−→ M , we

get M0
∗
−→M .

�

5.2.4 Other properties

The theorems we have introduced have many interesting consequences. Her are two of

them.

Theorem 5.2.8 Let N be a strongly connected T-net. For every marking M0 the fol-

lowing statements are equivalent:

(1) (N,M0) is live.

(2) (N,M0) is deadlock-free.

(3) (N,M0) has an infinite firing sequence.

Proof. (1)⇒ (2)⇒ (3) follow immediately from the definitions. We show (3)⇒ (1).

Let M0
σ
−→ be an infinite firing sequence. We claim that every transition of N

occurs in σ. Since N is strongly connected, (N,M0) is bounded (Theorem 5.2.4). Let

5.2. T-SYSTEMS 85

σ = t1 t2 t3 . . ., and M0
t1−→ M1

t2−→ M2
t3−→ Since (N,M0) is bounded,

there are indices i and j with i < j such that Mi = Mj . Let σij be the subsequence

of σ containing the transitions between Mi and Mj . By the fundamental property of

T-invariants (Proposition 4.3.15) ~σij is a T-Invariant . By Proposition 5.2.6 there is

n ∈ N such that ~σij = (n . . . n). So every transition of N occurs in σij , and so the

same holds for σ.

Since every transition of N occurs in σ, for every place and every circuit of N
some marking reached during the execution of N marks the place or the circuit. By

the fundamental property of T-systems, all circuits of N are marked at M0. By the

Liveness Theorem (Theorem 5.2.3), (N,M0) is live. �

Theorem 5.2.9 [Genrich’s Theorem] Let N be a strongly connected T-net with at least

one place and one transition. There is a marking M0 such that (N,M0) is live and 1-

bounded.

Proof. Since N is strongly connected, any marking that puts tokens on all places of

N is live, because it marks all circuits (Liveness Theorem), and bounded, because all

markings of N are (Corollary 5.2.5).

Let (N,M) be live and bounded, but not 1-bounded. We construct another live

marking L of N satisfying the following two conditions:

(1) L(γ) ≤M(γ) for every circuit γ of N , and

(2) L(γ) < M(γ) for at least one circuit γ.

By Theorem 5.2.4, at least one place of N has a smaller bound under L as under M .

Iterating this construction we obtain a 1-bounded marking of N .

Let s be a non-1-bounded place of (N,M). Some reachable marking M ′ satisfies

M ′(s) ≥ 2. Let L be the marking that puts exactly one token in s, and as many tokens

as M elsewhere.

Since M is live, it marks all circuits of N . By constructionL also marks all circuits,

and so L is also live. Condition (1) is a consequence of the definition of L. Condition

(2) holds for all circuits containing s (and there is at least one, because N is strongly

connected). �

Finally we prove a result stating that for any two markings M1, M2 of a 1-bounded

T-system (live or not), if M2 is reachable from M1, then it can be reached from M1 in

at most n(n− 1)/2 steps where n is the number of transitions of the T-system.

The result is proved with the help of two lemmas.

Definition 5.2.10 Given a sequence σ of transitions, we denote by A(σ) the set of

transitions occurring at least once in σ.

Lemma 5.2.11 Let (N,M0) be a T-system and let M0
σ1 σ2 t
−−−−−→ for some sequences

σ1σ2 ∈ T ∗, some t ∈ T such that

• t ∈ A(σ1), and

86CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

• A(σ2) ⊆ A(σ1).

Then M0
σ1 t σ2−−−−−→.

Proof. By induction on the length of σ2. If |σ2| = 0 there is nothing to prove. Assume

σ2 = σ′
2u for some u ∈ T . We prove M0

σ1 σ′

2 t u
−−−−−−→, and then the result follows by

applying the induction hypothesis to σ1 σ
′
2 t.

Let M0
σ1 σ′

2−−−−→M1
u
−→M2

t
−→. Consider two cases:

• u• ∩ •t = ∅. Then t is already enabled at M1, and we are done.

• u• ∩ •t 6= ∅. Let s ∈ u• ∩ •t. Since u ∈ A(σ2) and A(σ2) ⊆ A(σ1), we

have u ∈ A(σ1). So M2(s) ≥ 2, and therefore M1(s) ≥ 1. Further, for every

s ∈ •t \ u• we have M1(s) = M2(s) ≥ 1. So t is already enabled at M1, and

we are done.

�

Lemma 5.2.12 Let (N,M0) be a 1-bounded T-system with N = (S, T, F), and let

M0
σ
−→M . Then there exist sequences σ1σ2 such that

(1) M0
σ1 σ2−−−−→M .

(2) no transition occurs more than once in σ1,

(3) A(σ2) ⊆ A(σ1), and

(4) if σ is nonempty then A(σ2) ⊂ A(σ1).

Proof. We first prove that (1)-(3) hold by induction on |σ|. If |σ| = 0, then take

σ1, σ2 = ǫ. Assume σ = τ t for some t ∈ T and M0
τ
−→M ′ t

−→M . By induction

hypothesis there are τ1, τ2 such that M0
τ1 τ2−−−→M ′, no transition occurs more than

once in τ1, and A(τ2) ⊆ A(τ1). It t ∈ A(τ1), then take σ1 = τ1 and σ2 = τ2 t. If

t /∈ A(τ1), then by Lemma 5.2.11 we have M0
τ1 t τ2−−−−→M , and we take σ1 = τ1 t and

σ2 = τ2.

To prove (4), assume we have σ1, σ2 satisfying (1)-(3). We consider several cases.

• A(σ1) = ∅. Then, by (3), we have σ1 = σ2 = ǫ, and (4) holds vacuously.

• A(σ1) = T . If A(σ2) ⊂ A(σ1) then we are done. If A(σ2) = A(σ1), then

A(σ2) = T , and by (2) both σ1 and σ2 contains every transition exactly once.

Since N is a T-system, we then have M0
σ1−−→M0

σ2−−→M0. But then we can

replace σ2 by ǫ, and now the pair ǫ, σ1 satisfies (1)-(4).

• ∅ 6= A(σ1) 6= T . Since N is 1-bounded, by the Boundedness Theorem it is

strongly connected. So there is a place s with input and output transitions t and

u, respectively, such that t ∈ A(σ1) and u /∈ A(σ1). By (3) we have u /∈ A(σ2).
If t ∈ A(σ2) then M(s) ≥ 2, contradicting 1-boundedness. So t /∈ A(σ2), and

so A(σ2) ⊂ A(σ1).

5.3. FREE-CHOICE SYSTEMS 87

�

Theorem 5.2.13 [Shortest Sequence Theorem] Let (N,M0) be a b-bounded T-system

and let M be a reachable marking. Then there is an occurrence sequence M0
σ
−→M

such that |sigma| ≤ b · n(n− 1)/2, where n is the number of transitions of N .

Proof. We only prove the case b = 1. The general case requires a slight generalization

of Lemma 5.2.11 and 5.2.12.

By repeated application of Lemma 5.2.12 there exists an occurrence sequence

M0
σ1 σ2 ···σn−−−−−−−→M such that

• σi 6= ǫ for every 1 ≤ i ≤ n,

• no transition occurs more than once in any of σ1, . . . , σn, and

• A(σ1) ⊂ A(σ2) ⊂ · · · ⊂ A(σn).

Then we have |σi| ≤ n− i+1 for every 1 ≤ i ≤ n, and so |σ| ≤
∑n

i=1 i =
n(n−1)

2 . �

5.3 Free-Choice Systems

Definition 5.3.1 (Free-Choice nets, Free-Choice systems) A net N = (S, T, F) is

free-choice if s• × •t ⊆ F for every s ∈ S and t ∈ T such that (s, t) ∈ F . A Petri net

(N,M0) is free-choice if N is a free-choice net..

This definition is very concise and moreover symmetric with respect to places and

transitions. If the reader finds it cryptic, the following equivalent definitions may help.

Proposition 5.3.2 [Alternative definitions of free-choice nets]

(1) A net is free-choice if for every two transitions t1, t2:

(t1 6= t2 ∧
•t1 ∩

•t2 6= ∅)⇒
•t1 = •t2

(2) A net is free-choice if for every two places s1, s2:

(s1 6= s2 ∧ s•1 ∩ s•2 6= ∅)⇒ s•1 = s•2

Proof. Exercise. �

Figure 5.1 illustrates these definitions.

Clearly, S- and T-systems are special cases of free-choice systems (see Figure 5.2).

88CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

free-choice not free-choice

Figure 5.1

Circuits T-systemsS-systems

Free-choice systems

Figure 5.2: Net classes

5.3.1 Liveness

We showed in the last chapter that a Petri net in which every siphon contains an initially

marked trap is deadlock-free, but the converse does not hold. For free-choice systems

we obtain Commoner’s Theorem, a much stronger result characterizing liveness.

Theorem 5.3.3 [First part of Commoner’s Liveness Theorem]

Let (N,M0) be a free-choice system. If every proper siphon of N contains a trap

marked at M0, then (N,M0) is live.

Proof. We need the following definitions. Let M be a marking of N . A transition

t is dead at M if it is not enabled at any marking of [M〉. Let DM denote the set

of transitions dead at M . A transition t is live at M if t 6∈ DM ′ for every marking

M ′ ∈ [M〉. Let LM be the set of transitions live at M . Notice that a transition may be

neither live nor dead at a marking. We have

• If t ∈ LM and M ′ ∈ [M〉, then t ∈ LM ′ , that is, live transitions stay live.

• If t ∈ DM and M ′ ∈ [M〉, then t ∈ LM ′ , that is, dead transitions stay dead.

• If t 6∈ LM ∪ DM then there is a marking M ′ reachable from M such that t ∈
DM ′ . That is, transitions that are neither live nor dead may die.

5.3. FREE-CHOICE SYSTEMS 89

We prove that if (N,M0) is not live, then some proper siphon of N does not contain

any trap marked at M0. Let T be the set of transitions of N . Since (N,M0) is not live,

then, by the definitions above, there is a marking M reachable from M0 such that

T = DM ∪ LM , that is, every transition is either live or dead at M , and DM 6= ∅.
We claim: for every transition t ∈ DM there exists st ∈ •t such that M(st) = 0

and every t′ ∈ •st is dead at M .

Let St be the set of input places of t not marked at M . Since t ∈ DM , the set St

is nonempty. Since N is free-choice, for every s ∈ St every transition of s•t is dead

at M (otherwise we could fire t). So along any occurrence sequence starting at M the

number of tokens in each place of St does not decrease. Therefore, if all transitions

of •St are live at M then we can reach a marking that marks all of them. But such a

marking enables t, contradicting that t is dead at M . So at least one place st ∈ •t is

dead at M , which proves the claim.

Let now R = {st | t ∈ DM}. By the claim, and since DM 6= ∅, the set R is a

siphon unmarked at M . If R would contain a trap marked at M0 then, since marked

traps remain marked, R would be marked at M . So R does not contain any trap marked

at M0. �

A siphon is minimal if it does not properly contain any proper siphon. Clearly, the

Liveness Theorem still holds if we replace “siphon” by “minimal siphon”. The net of

Figure 5.3 has four minimal siphons: R1 = {s1, s3, s5, s7}, R2 = {s2, s4, s6, s8},
R3 = {s2, s3, s5, s7} and R4 = {s1, s4, s6, s8}. R1, R2, R3 and R4 are also traps,

and so, in particular, they contain traps. By the Liveness Theorem, every marking that

marks R1, R2, R3 and R4 is live.

We now proceed to prove the second part of the theorem. We have to show that if

some proper siphon R of a free-choice system (N,M0) does not contain an initially

marked trap, then (N,M0) is not live. If such a siphon exists, then the maximal trap

Q ⊆ R is unmarked at M0, and so M0 only can mark places of D := R \Q. Loosely

speaking, we construct a firing sequence that “empties” the places of D without mark-

ing the places of Q. In this way we reach a marking at which the siphon R is empty,

which proves that (N,M0) is not live.

We need the notion of a cluster.

Definition 5.3.4 (Cluster) Let N = (S, T, F) be a net. A cluster is an equivalence

class of the equivalence relation ((F ∩ (S × T))∪ (F ∩ (S × T))−1)∗. We denote [x]
the cluster of the node x ∈ S ∪ T .

It follows from the definition that every node of a net belongs to exactly one cluster,

that is, the set of clusters is a partition of S ∪ T .

Figure 5.4 shows the clusters of the net of Figure 5.3.

The following proposition is easy to prove:

Proposition 5.3.5 Let (N,M0) be a free-choice system with N = (S, T, F), and let c
be a cluster of c.

(1) (s, t) ∈ F for every s ∈ c ∩ S and t ∈ c ∩ T .

90CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

s1 s2

s3 s4 s5 s6

s7 s8

Figure 5.3: A free-choice system

(2) A marking enables some transition of c iff it enables every transition of c.

By (2) we can say that M enables a cluster.

The firing sequence σ that empties the siphonRis constructed as follows. We define

an allocation that assigns to each cluster c of N containing places of D a transition of

c∩T . Intuitively, the allocation is a recipe indicating which transition to fire: Whenever

the transitions of the cluster are enabled, we fire the allocated transition, and never any

of the others. The sequence σ is constructed by repeatedly enabling the clusters of D,

which is possible by liveness, and then firing the allocated transition.

We define allocations.

Definition 5.3.6 (Allocation) Let N = (S, T, F) be a net and let C be a set of clusters

of N . An allocation of C is a mapping α : C → T such that α(c) ∈ c for every c ∈ C.

Let C = {[t] | t ∈ D•}. We construct an allocation α : C → T satisfying the

following properties.

(a) α is circuit-free, that is, there is no cycle containing only places of D and allo-

cated transitions. If there were such a cycle, then by firing only allocated tran-

sitions we might never be able to empty D, because tokens in the cycle would

never “leave” it.

(b) α does not allocate any transition of •Q. Otherwise firing this transition would

mark the trap Q, which would make it impossible to empty the siphon.

5.3. FREE-CHOICE SYSTEMS 91

Figure 5.4: Clusters of the net of Figure 5.3

92CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

(c) while there are tokens in D it is always possible to fire any allocated transition

again, without firing any of the non-allocated transitions.

The recipe to construct an allocation satisfying (a) and (b) is given in the proof of

the following lemma. Notice that this part does not require the free-choice property.

Lemma 5.3.7 Let N be a net, let R be a set of places of N , and let Q be the maximal

trap included in Q, and let D = R \ Q. Let C = {[t] | t ∈ D•}. There exists a

circuit-free allocation α : C → T such that α(C) ∩ •Q = ∅.

Proof. By induction on |R|. If |R| = 0 then C = ∅ and we take the empty allocation.

If |R| > 0 and R is a trap then D = ∅, and again C = ∅. If R is not a trap then

there exists t ∈ R• \ •R (intuitively, t is a way-out through which tokens can leave

R). Let R′ = R \ •t, let Q′ be the maximal trap of R′, let D′ = R′ \ Q′, and let

C′ = {[t] | t ∈ (D′)•}.
By induction hypothesis there exists an allocation α′ : C′ → T , circuit-free for D′,

such that α′(C′) ∩ •Q′ = ∅. Define α : C → T as follows:

α(c) =

{

t if t ∈ c

α′(c) otherwise

We have to show that α is circuit-free and α(C)∩•Q′ = ∅. We first prove the following

facts, which we leave as an exercise:

(i) Q is the maximal trap included in R′.

(ii) D ⊆ D′ ∪ •t. (Use (i).)

(iii) C ⊆ C′ ∪ {[t]}. (Use (ii) and the definition of C.)

(iv) α(C) ⊆ α(C′) ∪ {t}. Use (iii) and the definition of α.)

To show that α is circuit-free, assume D ∪ α(C) contains a circuit γ. By (ii) and (iv)

we have D ∪ α(C) ⊆ D′ ∪ α′(C′) ∪ {t} ∪ •t. By induction hypothesis D ∪ α′(C′) is

circuit-fee. So γ contains transition t. Since all places of γ belong to R and t /∈ • R,

we have that γ contains no place of t•, contradicting that γ is a circuit.

To prove α(C)∩ •Q′ = ∅ we first observe that α(C)∩ •Q′ ⊆ (α(C′)∪{t})∩ •Q′,
which is equal to {t} ∩ •Q′ by induction hypothesis, and equal to ∅ because t /∈ •R
and •Q ⊆ •R. �

We now prove that we can find an infinite occurrence sequence that “respects a

given allocation”. This part crucially requires the free-choice property.

Lemma 5.3.8 [Allocation Lemma]

Let (N,M0) be a live free-choice system, let C be a set of clusters of N , and let

α : C → T be an allocation of C. There is an infinite occurrence sequence M0
σ
−→

such that σ contains

• infinitely many occurrences of allocated transitions, and

5.3. FREE-CHOICE SYSTEMS 93

• no occurrences of non-allocated transitions of C, i.e., of transitions of
⋃

c∈C c \
{α(c)}.

Proof. We iteratively define occurrence sequences σ0, σ1, σ2, . . ., and define σ as their

concatenation.

Given a marking Mi, let τi be a minimal occurrence sequence that enables some

cluster c ∈ C. The sequence exists by liveness. By the free-choice property, the se-

quence σi = τiα(c) is also a firing sequence. Let Mi+1 be the marking given by

Mi
σi−−→Mi+1. �

Theorem 5.3.9 [Second half of Commoner’s Liveness Theorem]

Let (N,M0) be a free-choice system. If (N,M0) is live, then every proper siphon of N
contains a trap marked at M0.

Proof. Let F be a proper siphon of N , and let Q be the maximal trap included in Q.

We prove M0(Q) > 0.

Since (N,M0) is live, we have M0(R) > 0 by Proposition 4.4.4. Let D = R \Q.

If D• = ∅ then D is a trap and so D ⊆ Q, but then D = ∅ and we are done.

If D• 6= ∅ then let C = {[t] | t ∈ D•}. By Lemma 5.3.7 there is an allocation

with domain C and circuit-free for D satisfying α(C) ∩ •Q = ∅. Let M0
σ
−→ be the

occurrence sequence of Lemma 5.3.8. It is easy to see that

• Q cannot become marked during the occurrence of σ.

Because transitions of •Q are not allocated, and so do not occur in σ.

• Q is marked at some point during the occurrence of σ.

Since α is circuit-free, there is an allocated transition t that occurs infinitely often

in σ, and whose input places are not output places of any allocated transition. So

the input places of t must get tokens from transitions that do not belong to the

clusters of C. But these transitions are necessarily output transitions of Q.

�

The non-liveness problem for free-choice systems is NP-complete, and so we can-

not expect to find a polynomial algorithm to check the condition of Commoner’s The-

orem:

Theorem 5.3.10 [Complexity]

The problem

Given: A free-choice system (N,M0)
Decide: Is (N,M0) not live?

is NP-complete.

94CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

x1x1

A1 A2 A3

x2 x3x2 x3

C1 C2 C3

False

Figure 5.5: Free-choice system for the formula Φ

Proof. Membership in NP follows from Commoner’s theorem: guess a siphon of

N , compute in polynomial time the maximal trap contained in R, and check that it is

unmarked at M0.

The proof of NP-hardness is by reduction from SAT, the satisfiability problem for

boolean formulas. The reduction is illustrated in Figure 5.5, which shows the free-

choice system for the formula

Φ = (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3)

�

5.3.2 Boundedness

Definition 5.3.11 (S-component) Let N = (S, T, F) be a net. A subnetN ′ = (S′, T ′, F ′)
of N is an S-component of N if

1. N ′ is a strongly connected S-net, and

5.3. FREE-CHOICE SYSTEMS 95

s1

s3 s5

s7

s2

s4 s6

s8

Figure 5.6: S-components of the net of Figure 5.3

2. T ′ = •S′ ∪ S′• (where s• = {t ∈ T | (t, s) ∈ F}, and analogously for •s).

Figure 5.6 shows two S-components of the net of Figure 5.3.

S-components are for free-choice systems what circuits are for T-systems: firing a

transition does not change the number of tokens of an S-component.

Proposition 5.3.12 Let (N,M0) be a Petri net and let N ′ = (S′, T ′, F ′) be an S-

component of N . Then M0(S
′) = M(S′) for every marking M reachable from M0.

Proof. Firing a transition either takes no tokens from a place of the component and

adds none, or it takes exactly one token and adds exactly one token. �

Theorem 5.3.13 [Hack’s Boundedness Theorem]

Let (N,M0) be a live free-choice system. (N,M0) is bounded iff every place of N
belongs to a S-component.

Proof. (⇐) Exercise

(⇒) (Sketch). We first show that every minimal siphon N is the set of places of a

S-component. Then we show that every place is contained in some minimal siphon. �

Proposition 5.3.14 [Place bounds]

Let (N,M0) be a live and bounded free-choice system and let s be a place of N . We

96CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

have

max{M(s) |M0
∗
−→M} =

min{M0(S
′) | S′ is the set of places of a S-component of N}

Proof. Analogous to the Boundedness Theorem for T-systems. �

Theorem 5.3.10 shows that there is no polynomial algorithm for Liveness (unless

P = NP). Now we ask ourselves what is the complexity of deciding if a free-choice

system is simultaneously live and bounded. We can of course first use the decision

procedure for liveness, and then, if the net is live, check the condition of the Bounded-

ness Theorem. But there are more efficient algorithms.1. The fastest known algorithm

runs in O(n ·m) time for a net with n places and m transitions. A not so efficient but

simpler algorithm follows immediately from the next theorem:

Theorem 5.3.15 [Rank Theorem]

A free-choice system (N,M0) is live and bounded iff

1. N has a positive S-invariant.

2. N has a positive T-invariant.

3. The rank of the incidence matrix (N) is equal to c− 1, where c is the number of

clusters of N .

4. Every siphon of N is marked under M0.

Proof. Omitted. �

Conditions (1) and (2) can be checked using linear programming, condition (3)

using well-known algorithms of linear algebra, and condition (4) with the algorithm of

Section 4.4.1.

5.3.3 Reachability

The reachability problem is NP-hard for live and bounded free-choice nets.

Theorem 5.3.16 Reachability is NP-hard for live and bounded free-choice nets.

Proof. We reduce SAT to the following problem:

Given: A live and bounded free-choice system (N,M0) whereN = (S, T, F),
two disjoint sets T=1, T≥1 ⊆ T , and a marking M .

Decide: Is M reachable from M0 by means of a firing sequence that fires

each transition of T=1 exactly once, and each transition of T≥1 at least

once?

1Compare with this: in order to decide if a number is divisible by 100.000, we can first check if it is

divisible by 3125, and, if so, if it is divisible by 32. However, there is a faster procedure: check if the last

five digits are zeros.

5.3. FREE-CHOICE SYSTEMS 97

Figure 5.7 shows the net N , the markings M0 and M , and the sets T=1, T≥1 for

the formula x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2). the formula has three clauses C1, C2, C3.

The black tokens correspond to M0, and the white tokens to M . Intuitively, the net

chooses a variable xi, and assigns it a value by firing txi or fxi. This sends tokens to

the three modules at the bottom of the figure, one for each clause. More precisely, for

each clause the transition sends exactly one token to one of the two transitions of the

module: if the value makes the clause true, then the token goes to the input place of the

transition that belongs to T≥1; otherwise the token goes to the input place of the other

transition. The formula is satisfiable iff the Petri net has a firing sequence that fires

each transition of T=1 exactly once, (this corresponds to choosing a truth assignment)

and each transition of T≥1 at least one (so that at least one of the literals of each clause

is true under the assignment).

Now we reduce the problem above to the reachability problem for live and bounded

free-choice nets. Given a net with sets T=1, T≥1 ⊆ T , we “merge” each transition of

T≥1 with the transition t≥1 of a separate copy of the “module” shown in Figure 5.8.

Similarly, we merge each transition of T=1 with the transition t=1 of a separate copy

of the “module” shown in Figure 5.9.

The first module ensures that in order to reach the marking M the transition t≥1

has to be fired at least once. The second module ensures that the transition t=1 has to

be fired exactly once. �

As for Commoner’s Theorem, membership in NP is harder to prove. It follows

from this theorem, due to Yamasaki et al.

Definition 5.3.17 Let N = (S, T, F) be a net, and let U ⊆ T . The subnet NU =
(S′, T ′, F ′) generated by U is given by:

• T ′ = U ,

• S′ = •U ∪ U•, and

• F ′ = F ∩ ((S′ × T ′) ∪ (T ′ × S′)).

Theorem 5.3.18 [Reachability Theorem]

Let (N,M0) be a live and bounded free-choice system. M is reachable from M0 iff

there X ∈ N|T | such that

• M = M0 +N ·X , and

• (NU ,MU) has no unmarked traps, where U = {t ∈ T | X(t) > 0} and MU is

the projection of M onto the places of NU .

Proof. Omitted. �

Membership in NP can then be proved as follows: Guess a set U ⊆ T , construct

NU , compute in polynomial time the maximal trap of NU unmarked at M , check that

it is the empty trap, guess in polynomial time a vector X ∈ N|T | such that X(t) ≥ 1
for every t ∈ U , and check that it is a solution of M = M0 + N · X . Proving that

98CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

x1 x2

tx1 fx1 tx2 fx2

>= 1 >= 1 >= 1

Marking M0

Marking M

C2
C3C1

= 1 = 1

End

Start

Figure 5.7: Result of the reduction for the formula x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

5.3. FREE-CHOICE SYSTEMS 99

0=
> 1

t t
Marking M

Marking M

Figure 5.8: The first module

���
���
���
���

��������

��������

��������

����������

����������

����������

����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������

���
���
���
���

t = 1

Marking M

Marking M0

Figure 5.9: The second module.

100CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

the vector can be guessed in polynomial time follows from the fact that Integer Linear

Programming is also in NP. A more direct proof of membership in NP follows from the

Shortest Sequence Theorem for free-choice systems (see Theorem 5.3.21 below).

For systems satisfying an additional condition there is a polynomial algorithm. A

Petri net (N,M0) is cyclic if, loosely speaking, it is always possible to return to the

initial marking. Formally: ∀M ∈ [M0〉 : M0 ∈ [M〉. We have:

Theorem 5.3.19 [Reachability Theorem for Cyclic Free-Choice Nets]

Let (N,M0) be a live, bounded, and cyclic free-choice system. A marking M of N is

reachable from M0 iff M0 ∼M .

Proof. Omitted. �

Corollary 5.3.20 The problem

Given: a live, bounded, and cyclic free-choice system (N,M0) and a

marking M
Decide: Is M reachable?

can be solved in polynomial time.

This result is only useful if we are able to check efficiently if a live and bounded

free-choice system is cyclic. The following theorem shows that this is the case:

Theorem 5.3.21 A live and bounded free-choice system (N,M0) is cyclic iff M0 marks

every proper trap of N .

Proof. Omitted. �

5.3.4 Other properties

There is also a Shortest Sequence Theorem for live and bounded free-choice nets.

Theorem 5.3.22 [Shortest Sequence Theorem]

Let (N,M0) be a b-bounded free-choice system and let M be a reachable marking.

Then there is an occurrence sequence M0
σ
−→M such that |sigma| ≤ b n(n+ 1)(n+

2)/6, where n is the number of transitions of N .

This gives a simpler prove that the reachability problem for live and bounded free-

choice nets is in NP: just guess in polynomial time an occurrence sequence leading to

M .

