Definition 2.16 Liveness and related properties M'EM-> A system is live if, for every reachable marking M and every transition t, there exists a marking $M' \in M$ which enables t. If (N, M_0) is a live system, then we also say that M_0 is a live marking of N. A system is place-live if, for every reachable marking M and every place s, there exists a marking $M' \in [M]$ which marks s. A system is deadlock-free if every reachable marking enables at least one transition; in other words, if no dead marking can be reached from the initial marking. ## Definition 2.20 Bounded systems, bound of a place A system is bounded if for every place s there is a natural number b such that $M(s) \leq b$ for every reachable marking M. If (N, M_0) is a bounded system, we also say that M_0 is a bounded marking of N. The bound of a place s in a bounded system (N, M_0) is defined as $$\max\{M(s)\mid M\in\{M_0\}\}$$ A system is called b-bounded if no place has a bound greater than b. ## Definition 2.23 Well-formed nets A net N is well-formed if there exists a marking M_0 of N such that (N,M_0) is a live and bounded system. ## Lemma 2.24 Every live and bounded system (N,M_0) has a reachable marking M and an occurrence sequence $M \stackrel{\sigma}{\longrightarrow} M$ such that all transitions of N occur in σ^{\blacksquare} . ### Strong Connectedness Theorem Well-formed nets are strongly connected. If N is not strong connected then there is an ora sud Het there is L yak y -> -- -> x Two caxs; By liveness we can make p again and again Sure there is no path for top be can do 10 without pring t So p & not & unded. By hveness we can just again and again Since there is he noth from pot ve can do is without fry my my want of p -) w boundedness. Theorem 2.30 $A\ necessary\ condition\ for\ liveness$ If (N, M_0) is a live system, then every semi-positive S-invariant I of N satisfies $I \cdot M_0 > 0$. Theorem 2.31 $A\ sufficient\ condition\ for\ boundedness$ Let (N, M_0) be a system. If N has a positive S-invariant I, then (N, M_0) is bounded. ## **Definition 2.32** Markings that agree on all S-invariants Two markings M and L of a net are said to agree on all S-invariants if $I \cdot M = I \cdot L$ for every S-invariant I of the net. ## Theorem 2.33 A necessary condition for reachability Let (N,M_0) be a system, and let $M\in [M_0\rangle$. Then M and M_0 agree on all S-invariants. Theorem 2.34 Characterization of markings that agree on all S-invariants Two markings M and L of a net N agree on all S-invariants iff the equation $M + \mathbf{N} \cdot X = L$ has some rational-valued solution for X. ### **Proof:** (\Rightarrow): Since M and L agree on all S-invariants, they also agree on a basis $\{I_1,\ldots,I_k\}$. For every vector I_j of this basis we have $I_j\cdot(L-M)=\mathbf{0}$. A well-known theorem of linear algebra states that the columns of $\mathbf N$ include a basis of the space of solutions of the homogeneous system $$I_j \cdot X = \mathbf{0} \qquad (1 \le j \le k)$$ Therefore, (L-M) is a linear combination in $\mathbb Q$ of these columns, i.e., $\mathbf N\cdot X=(L-M)$ has some rational-valued solution for X. # Theorem 2.38 Every well-formed net has a positive T-invariant.