Definition 2.16 Liveness and related properties

M'EM->

A system is live if, for every reachable marking M and every transition t, there exists a marking $M' \in M$ which enables t. If (N, M_0) is a live system, then we also say that M_0 is a live marking of N.

A system is place-live if, for every reachable marking M and every place s, there exists a marking $M' \in [M]$ which marks s.

A system is deadlock-free if every reachable marking enables at least one transition; in other words, if no dead marking can be reached from the initial marking.

Definition 2.20 Bounded systems, bound of a place

A system is bounded if for every place s there is a natural number b such that $M(s) \leq b$ for every reachable marking M. If (N, M_0) is a bounded system, we also say that M_0 is a bounded marking of N.

The bound of a place s in a bounded system (N, M_0) is defined as

$$\max\{M(s)\mid M\in\{M_0\}\}$$

A system is called b-bounded if no place has a bound greater than b.

Definition 2.23 Well-formed nets

A net N is well-formed if there exists a marking M_0 of N such that (N,M_0) is a live and bounded system.

Lemma 2.24

Every live and bounded system (N,M_0) has a reachable marking M and an occurrence sequence $M \stackrel{\sigma}{\longrightarrow} M$ such that all transitions of N occur in σ^{\blacksquare} .

Strong Connectedness Theorem

Well-formed nets are strongly connected.

If N is not strong connected then there is an ora

sud Het there is L yak y -> -- -> x

Two caxs;

By liveness we can make p again and again Sure there is no path for top be can do 10

without pring t

So p & not & unded.

By hveness we can just again and again Since there is he noth from pot ve can do is without fry my my want of p -) w boundedness.

Theorem 2.30 $A\ necessary\ condition\ for\ liveness$ If (N, M_0) is a live system, then every semi-positive S-invariant I of N satisfies $I \cdot M_0 > 0$. Theorem 2.31 $A\ sufficient\ condition\ for\ boundedness$ Let (N, M_0) be a system. If N has a positive S-invariant I, then (N, M_0) is bounded.

Definition 2.32 Markings that agree on all S-invariants

Two markings M and L of a net are said to agree on all S-invariants if $I \cdot M = I \cdot L$ for every S-invariant I of the net.

Theorem 2.33 A necessary condition for reachability

Let (N,M_0) be a system, and let $M\in [M_0\rangle$. Then M and M_0 agree on all S-invariants.

Theorem 2.34 Characterization of markings that agree on all S-invariants

Two markings M and L of a net N agree on all S-invariants iff the equation $M + \mathbf{N} \cdot X = L$ has some rational-valued solution for X.

Proof:

(\Rightarrow): Since M and L agree on all S-invariants, they also agree on a basis $\{I_1,\ldots,I_k\}$. For every vector I_j of this basis we have $I_j\cdot(L-M)=\mathbf{0}$. A well-known theorem of linear algebra states that the columns of $\mathbf N$ include a basis of the space of solutions of the homogeneous system

$$I_j \cdot X = \mathbf{0} \qquad (1 \le j \le k)$$

Therefore, (L-M) is a linear combination in $\mathbb Q$ of these columns, i.e., $\mathbf N\cdot X=(L-M)$ has some rational-valued solution for X.

Theorem 2.38 Every well-formed net has a positive T-invariant.