Definition 2.16  Liveness and relal

A system is live if, for e reachable marking M and every transition £, there
exists a marking M’ €M) which enables ¢. If (N, My) is a live system, then we
also say that M, is a live marking of N.

A system is place-live if, for every reachable marking M and every place s, there
exists a marking M’ € [M) which marks s.

A system is deadlock-free if every reachable marking enables at least one transi-
tion; in other words, if no dead marking can be reached from the initial marking.




Bounded systems, bound of a place

A system is bounded if for every place s there is a natural number b such that
M(s) < b for every reachable marking M. If (N, Mg) is a bounded system, we
also say that Mp is a bounded marking of N. .

The bound of a place s in a bounded system (N, Mp) is defined as

max{M(s) | M € [Mo)}

A system is called b-bounded if no place has a bound greater than b.
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Definition 2.23 Well-formed nets

A net N is well-formed if there exists a marking My of NV such that (N, M) is a

live and bounded system.

Lemma 2.24

Every live and bounded system (N, Mp) has a reachable marking M and an

occurrence sequence M —Z+ M such that all transitions of N occur in o®
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Theorem 2.25 Strong Connectedness Theorem

Well-formed nets are strongly connected.
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Theorem 2.30 A necessary condition for leness

If (N, Mp) is a live system, then every semi-positive S-invariant I of N satisfies
I My>0.




heorem 2.31 A sufficient condition for boundedness

Let (N, M,) be a system. I N has a positive S-invariant I, then (N, My) is
bounded.
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Definition 2.32  Markings that agree on all S-invariants i

Two markings M and L of a net are said to agree on all S-invariants if [-M = I L
for every S-invariant I of the net.

Theorem 2.33 A necessary condition for reachability

Let (N, M,) be a system, and let M € [Mp). Then M and M, agree on all
S-invariants.




Theorem 2.34  Characterization of markings that agree on all S-invariants

Two markings M and L of a net N agree on all S-invariants iff the equation
M + N X = L has some rational-valued solution for X.

Proof:
(=): Since M and L agree on all S-invariants, they also agree on a basis {I;,..., I }.
For every vector I; of this basis we have I; - (L — M) == 0. A well-known theorem of
linear algebra states that the columns of N include a basis of the space of solutions
of the homogeneous system

L-X=0 (1<j<k)
Therefore, (L—M) is a linear combination in @ of these columns, i.e., N-X = (L—M)
has some rational-valued solution for X.




Theorem 2.38

Every well-formed net has a positive T-invariant.




