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Petri nets – Homework 6

Discussed on Thursday 14th July, 2016.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 6.1 Minimal traps and siphons in free-choice nets

A trap (resp. siphon) is minimal if it is proper (not empty) and contains no other proper trap (resp. siphon).

(a) Add arcs to the Petri net below such that it becomes a live and bounded free-choice system.

(b) Find all minimal traps and all minimal siphons of the resulting free-choice net.

(c) Does every minimal siphon contain a proper trap? Does every minimal trap contain a proper siphon?
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Solution:

(a) The net is already free-choice, however it is not bounded with the given initial marking. We can add arcs from s3 to t2
and from s2 to t3 to make the Petri net bounded, while remaining live and free-choice.
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(b) The minimal traps of the net are R1 = {s1, s2}, R2 = {s3, s4} and R3 = {s2, s3}. R1 and R2 are also the minimal siphons
of the net. Note that R1 and R2 are initially marked, however R3 is not.

(c) The minimal siphons R1 and R2 are traps themself and therefore contain proper traps. However, the trap R3 does not
contain any non-empty siphon.

As the free-choice system is live, this also follows from Commoner’s Liveness Theorem, which states that every minimal
siphon needs to contain an initially marked trap.

Exercise 6.2 Characterization of minimal siphons

(a) Let N be a net, R a minimal siphon of N , and NR the subnet generated by (R, •R). Show: NR is strongly connected.

Hint : For an arc (x, y) in NR, with Q = {s ∈ R | there exists a path from s to x in NR}, show that Q is a proper siphon,
and therefore there exists a path from y into Q to X.

(b) Exhibit a strongly connected net in which not every place belongs to a minimal siphon.

Hint : Two places and two transitions suffice.



Solution:

(a) Observe first that NR is connected, otherwise, NR has two different connected components, and the set of places of each
of them is a proper siphon included in R.

Let (x, y) be an arbitrary arc of NR. We prove in four steps that NR contains a path from y to x. Define

Q = {s ∈ R | there exists a path from s to x in NR}.

i) Q 6= ∅.

Since x is a node of NR, x ∈ R ∪ •R.

If x ∈ R, then x ∈ Q by the definition of Q, and hence Q 6= ∅.

If x ∈ •R, then x ∈ R• since R is a siphon. So x ∈ s• for some place s ∈ R. By the definition of Q, s ∈ Q and hence
Q 6= ∅

ii) Q is a siphon.

Let t be a transition of •Q. We show t ∈ Q•. Since t ∈ •Q, we have t ∈ •s for some place s ∈ Q. By the definition of
Q, the subnet NR contains a path π leading from s to x. Since Q ⊆ R, and R is a siphon, t is an output transition
of some place s′ ∈ R. So the path π′ = s′tπ leads from s′ to x. Since t ∈ •Q ⊆ •R, the path π′ only contains
elements of R∪ •R, and is therefore a path of NR. Then s′ ∈ Q by the definition of Q. Since t ∈ s′•, we get t ∈ Q•.

iii) By i) and ii), Q is a proper siphon. Since Q is included in the minimal siphon Q, we have Q = R.

iv) NR contains a path from y to x.

Since y is a node of NR, we have y ∈ R ∪ •R.

Assume y ∈ R. Then y ∈ Q by iii) and, by the definition of Q, NR contains a path from y to x.

Assume y ∈ •R. Then y ∈ Q by iii). So y ∈ •s for some s ∈ Q. By the definition of Q, there exists a path π of NR

from s to x. Since s ∈ Q ⊆ R, the path yπ is contained in NR, and leads from y to x.

(b) The following net is strongly connected, however s2 does not belong to any minimal siphon, as {s2} is not a siphon by
itself, but {s1} is a minimal siphon. All places together form a siphon as {s1, s2}, which is however not minimal.
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Exercise 6.3 Liveness and boundedness in free-choice systems

The result from the previous exercise can be used to show the following proposition (full proof given in Proposition 5.4 of “Free
Choice Petri Nets” by J. Desel and J. Esparza):

Proposition 6.3.1. Let N be a well-formed free-choice net and R be a minimial siphon of N . Then

(1) R is a trap of N .

(2) The subnet generated by (R, •R) is an S-component of N .

Using the above proposition, as well as Commoner’s Liveness Theorem and Hack’s Boundedness Theorem, prove or disprove
the following:

(a) A bounded free-choice system (N,M0) is live iff every minimal siphon of N is a trap marked at M0.

(b) A live free-choice system (N,M0) is bounded iff every minimal siphon of N is a trap marked at M0.

Solution:

(a) (⇒) Let (N,M0) be a live and bounded free-choice system. Then N is well-formed, and by Proposition 6.3.1, every
minimal siphon of N is a trap. By Commoner’s Liveness Theorem, every minimal siphon contains a trap marked at M0,
therefore every minimal siphon of N is also a trap marked at M0.

(⇐) Let (N,M0) be a bounded free-choice system where every minimal siphon of N is a trap marked at M0. Then every
minimal siphon contains a trap marked at M0, and by Commoner’s Liveness Theorem, the system is live.



(b) The (⇒) direction holds as in (a), however the other direction does not. Even though we can infer with Proposition
6.3.1 that every minimal siphon generates an S-component of N , we can not show that every place belongs to a minimal
siphon and therefore to an S-component, which would be necessary for Hack’s Boundedness Theorem.

The following live free-choice system is a counterexample for this conjecture. It has no minimal siphons, therefore every
minimal siphon is a trap marked at M0, however it is unbounded.
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Exercise 6.4 Reducing SAT to reachability in free-choice systems

Reduce the satisfiability problem for boolean formulas in conjunctive normal form to the reachability problem in free-choice
systems.

For that, give a polynomial time translation that, for a given formula ϕ, produces a free-choice system (N,M0) and a marking
M such that ϕ is satisfiable iff M is reachable in (N,M0). Describe your reduction informally and give the resulting Petri net
when applying it to the formula below.

ϕ = (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3)

Solution:

We use places xi for each variable and transitions to choose their assignment. Places cj for each clause get marked if the
assignment makes that clause true. A transition for each clause can remove additional tokens from the clause places. The
target marking M is given by M(cj) = 1 for each clause place cj and M(s) = 0 for all other places s. M is reachable if and
only if all clauses can be made true by an assignment of the variables, i.e., ϕ is satisfiable.

For the given formula, we get the following free-choice system and the target marking with one token in c1 and c2 each and no
tokens elsewhere.
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Exercise 6.5 Unfoldings

Consider the transition systems below, with the synchronization constraint T:
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T = {〈t1, ε, v1〉, 〈t2, ε, ε〉, 〈ε, u1, v2〉, 〈ε, u2, ε〉, 〈ε, ε, v3〉, 〈ε, ε, v4〉}

The following Petri net represents the product of the transition systems:



s1 s2 r2

r1

r3 p2 p1

〈t1, ε, v1〉

〈t2, ε, ε〉

〈ε, u1, v2〉

〈ε, u2, ε〉〈ε, ε, v3〉 〈ε, ε, v4〉

Using the search strategy [w] ≺ [w′]⇔ |w| < |w′| for Mazurkiewicz traces w,w′, compute the finite and complete prefix of the
unfolding of this product.

Solution:

The following is the unfolding of the net with above search strategy. Each event is labeled with its associated transition and
in blue the global state reached by firing the local configuration of the event. Terminal events are also colored blue.
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1〈t1, ε, v1〉 〈s2, r2, p1〉 2〈ε, u1, v2〉 〈s1, r3, p2〉

3〈t2, ε, ε〉 〈s1, r2, p1〉 4〈ε, ε, v3〉 〈s2, r1, p1〉 5〈ε, ε, v4〉 〈s1, r1, p2〉 6〈ε, u2, ε〉 〈s1, r3, p1〉

7〈t1, ε, v1〉 〈s2, r2, p1〉 8〈ε, u1, v2〉 〈s2, r3, p2〉 9〈t1, ε, v1〉 〈s2, r2, p2〉 10〈ε, u1, v2〉 〈s1, r3, p2〉

11〈t2, ε, ε〉 〈s2, r3, p1〉 12〈ε, ε, v4〉 〈s2, r1, p2〉 13〈ε, ε, v3〉 〈s2, r1, p2〉 14〈ε, u2, ε〉 〈s1, r2, p2〉

15〈t1, ε, v1〉 〈s2, r3, p2〉


