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Petri nets – Homework 5

Discussed on Wednesday 29th June, 2016.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 5.1 Boundedness and liveness in S/T-systems

Show the following:

(a) An S-system (N,M0) is bounded for any M0.

(b) If (N,M0) is a live S-system and M ′0 ≥M0, then (N,M ′0) is also live.

(c) If (N,M0) is a live and bounded T-system, then (N,M ′0) is also bounded for any M ′0.

(d) If (N,M0) is a live T-system and M ′0 ≥M0, then (N,M ′0) is also live.

Exhibit Petri nets for the following:

(e) Give a bounded T-system (N,M0) and a marking M ′0 ≥M0 such that (N,M ′0) is not bounded.

(f) Give a 1-bounded S-system (N,M0) where M0(S) > 1.

(g) Give a live and 1-bounded T-system (N,M0) with a circuit γ where M0(γ) > 1.

Solution:

(a) By the fundamental property of S-systems (Proposition 5.1.1), for every reachable marking, we have M(S) = M0(S) and
therefore M(s) ≤M0(S) for all s ∈ S.

(b) By the liveness theorem for S-systems (Theorem 5.1.3), (N,M0) is live iff N is strongly connected and M0(S) > 0, and
as M ′0(S) ≥M0(S) > 0, (N,M ′0) is also live.

(c) A live T-system (N,M0) is bounded iff every place s of N belongs to some circuit γ (Theorem 5.2.4). By the fundamental
property of T-systems (Proposition 5.2.2), we have M(γ) = M ′0(γ′) for any marking M ′0 and marking M reachable from
M ′0. Therefore s, belonging to γ, is always bounded by M ′0(γ) and thus the system is bounded for any initial marking.

(d) By the liveness theorem for T-systems, (N,M0) is live iff M0(γ) > 0 for every circuit γ, and as M ′0(γ) ≥ M0(γ) > 0,
(N,M ′0) is also live.

(e) Due to (c), the system needs to be non-live. The following Petri net without any tokens is a non-live, bounded T-system.
By adding the blue token to s1, the net becomes unbounded.

s1

s2 s3

t1 t2 t3

(f) Due to the boundedness theorem for S-systems, the system needs to be non-live. The following Petri net is a non-live,
1-bounded S-system with M0(S) > 1:



s1

s2 s3

t1 t2

(g) In the following live T-system, the inner circuit s1s2s3 contains 2 tokens, however each place is 1-bounded due to the
outer circuits.

s1

s2 s3

s4

s5 s6

t1 t2
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Exercise 5.2 Marking equation in S-systems

In the lecture, it was shown that for an S-system (N,M0), a marking M of N is reachable from M0 iff the marking equation
M = M0 + N ·X has a nonnegative integer solution, i.e. X : T → N.

Show the following: For an S-system (N,M0), a marking M of N is reachable from M0 iff the marking equation M = M0+N·X
has a nonnegative rational solution, i.e. X : T → Q with X ≥ 0.

Note: We have not found a simple, constructive proof, so finding one is probably not that easy, though you should try to see
the rationale for why this works. If you find an easy proof, please send it to us.

Solution:

Proof based on graph theory and maximal flow (see L.R. Ford and D.R Fulkerson, “Maximal flow through a network”,
1956.):

An S-net (S, T, F ) is basically a directed graph (V,E), with the places S as nodes V and an edge (s, s′) ∈ E if there is a t ∈ T
with •t = {s} and t• = {s′}. A rational solution X to the marking equation M = M0 + N ·X with X ≥ 0 then assigns each
edge in the graph a nonnegative rational value. For each s ∈ S, we have∑

t∈•s

X(t)−
∑
t∈s•

X(t) = M(s)−M0(s).

If we think of every place with M0(s) > M(s) as an input place and every place with M(s) > M0(s) as an output place, the
solution X gives us a flow of tokens from the input places to the output places. As I = (1, . . . , 1) is an S-invariant of any S-net,
we have M(S) = I ·M = I ·M0 + I ·N︸ ︷︷ ︸

=0

·X = I ·M0 = M0(S) and therefore the input flow is equal to the output flow.

On the graph (V,E), we add an source vertex vs and a sink vertex vt, with an edge from vs to every s ∈ S with M0(s) > M(s)
and capacity M0(s)−M(s). Similarly we add an edge from every s ∈ S with M(s) > M0(s) to vt with capacity M(s)−M0(s).
The solution X then gives us a maximal flow from vs to vt, if we assign maximal flow to all edges from vs and vt.

The integral flow theorem (following from the correctness of the Ford-Fulkerson algorithm) then states that if all edge capacities
are integral, then there is a maximum flw in which all flows are integers. This maximal flow needs to have the same flow as X
on the source and edge vertices. If we consider this flow as a Parikh vector Y , it moves the same amount of tokens from each
input place to each output place, and therefore we have M = M0 + N · Y and Y ≥ 0, so it is a nonnegative integer solution to
the marking equation and thus, there is an occurence sequence leading from M0 to M .

Note that this integral flow may be found with the Ford-Fulkerson algorithm, or also in polynomial time with the Edmonds-Karp
algorithm.

Proof based on linear and integer programming (see A. Schijver, “Theory of Linear and Integer Programming”, p. 269,
Theorem 19.3 and p. 301, Theorem 21.5, for detailed proofs of the used theorems):



For an S-net, the incidence matrix N contains exactly one +1 and one −1 in every column, and the remaining entries are 0
(as |•t| = 1 = |t•| for every t ∈ T ). Therefore the incidence matrix is totally unimodular.

As N is totally unimodular and M and M0 are integral, the polyhedron {X | X ≥ 0, N ·X ≤M −M0} is also integral, i.e. all
vertices of the polygon are integral. A rational solution X to the marking equation M = M0 + N ·X with X ≥ 0 then satisfies
N ·X ≤M −M0. Therefore X is contained in the polyhedron and it is not empty. Further, as X achieves equality, it is part
of some face of the polyhedron and we can then find some vertex Y of the polyhedron contained in this face. This Y is then
integral and satisfies N · Y = M −M0, so it is a nonnegative integer solution to the marking equation and therefore M is
reachable from M0. Note that this Y may be found e.g. by a linear program in polynomial time.

Exercise 5.3 Polynomial time algorithm for deciding liveness of a T-system

(a) Give a polynomial time algorithm to check if a T-system is live (note that a T-net may have an exponential number of
circuits, so simply enumerating all circuits is infeasible).

(b) Apply your algorithm to the T-system below to decide if it is live.

s1

s2 s3

s4

s5 s6

s7

t1 t2

t3 t4

Solution:

(a) A T-system is live iff M0(γ) > 0 for every circuit γ of N (Theorem 5.2.3). While a net may have an exponential number
of circuits, we can check the existance of an unmarked circuit in polynomial time by a simple depth-first search restricted
to all places unmarked at M0, with the transitions acting as edges between places. If we visit a place currently on the
stack, we have found an unmarked circuit and therefore the net is not live. Otherwise, if we do not find such a circuit,
the net is live.

Input: A T-net N = (S, T, F ) and a marking M0.
Output: YES if the T-system (N,M0) is live, otherwise NO.
Initialization: visited(s) := false and onstack(s) := false for all s ∈ S, emptycircuit = false.

begin
while there are s ∈ S with visited(s) = false and M0(s) = 0 do

dfs(s)
endwhile
if emptycircuit = true then

return NO
else

return YES
endif

end
function dfs(s) begin

onstack(s) := true
visited(s) := true
for s′ ∈ (s•)

•
with M0(s) = 0 do

if onstack(s′) = true then
emptycircuit = true

else if visited(s′) = false then
dfs(s′)

endif
endfor
onstack(s) := false

end

(b) By starting at all unmarked places and following transitions to unmarked places, we quickly see that there is no unmarked
circuit, so the Petri net is live.



In contrast, by enumerating all circuits, we need to look at all these circuits:

γ1 = s1t1s3t3s7t4s5t2

γ2 = s2t1s3t3

γ3 = s5t2s6t4

γ4 = s1t1s4t4s5t2

Exercise 5.4 Strong Connectedness Theorem

Let (N,M0) be a live and bounded Petri net. Show that N is strongly connected.

Hint: To show that the net is strongly connected, you need to show that for every arc (x, y) ∈ F , there is a path from y to x.
Use liveness to construct a firing sequence containing the transition of the arc often enough and then use boundedness on the
place of the arc to show that there needs to be a path back. You may also use the following lemma, proven in exercise 1.6:

Lemma 5.4.1 (Exchange Lemma). Let u and v be transitions of a net satisfying •u ∩ v• = ∅. If M
vu−→M ′ then M

uv−→M ′.

Solution: Let (x, y) ∈ F . We distinguish between two cases:

Case 1: x ∈ S and y ∈ T . Let V be the set of all transitions v ∈ T for which there is a path from y to v and let U = T\V .
For u ∈ U and v ∈ V we have •u ∩ v• = ∅.

Let b be the bound of x. Liveness implies that there exists a finite firing sequence M0
σ−→ M with b + 1 occurrences of y in

σ. By Lemma 5.4.1, transitions of σ can repeatedly be swapped, resulting in firing sequences M0
σ1−→M ′

σ2−→M such that σ1
contains only transitions in U and σ2 contains only transitions in V .

Transition y is in the set V , so y occurs b + 1 times in σ2. Since M ′(x) ≤ b and y ∈ x•, some transition v ∈ •x occurs in σ2.
Since σ2 contains only transitions of V , we have v ∈ V . By definition of V , there is a path from y to v and by extension also
from y to x.

Case 2: x ∈ T and y ∈ S. Let U be the set of all transitions u ∈ T for which there is a path from u to x and let V = T\U .
For u ∈ U and v ∈ V we have •u ∩ v• = ∅.

Let b be the bound of y. Liveness implies that there exists a finite firing sequence M0
σ−→ M with b + 1 occurrences of x in

σ. By Lemma 5.4.1, transitions of σ can repeatedly be swapped, resulting in firing sequences M0
σ1−→M ′

σ2−→M such that σ1
contains only transitions in U and σ2 contains only transitions in V .

Transition x is in the set U , so x occurs b + 1 times in σ1. Since M ′(y) ≤ b and x ∈ •y, some transition u ∈ y• occurs in σ1.
Since σ1 contains only transitions of U , we have u ∈ U . By definition of U , there is a path from u to x and by extension also
from y to x.


