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Petri nets – Homework 3

Discussed on Thursday 2nd June, 2016.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 3.1 Marking equation

(a) Construct the incidence matrix N of the following Petri net:
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s2

s3

s4

s5

t1
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t3
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t5

(b) For the marking M marking {s2, s3}, solve the marking equation M = M0 + N ·X for X. Note that M0 = (1, 0, 0, 0, 0)
and M = (0, 1, 1, 0, 0) as vectors with the ordering (s1, s2, s3, s4, s5) for the places. Does the equation have a solution
over the integers? Does it have a non-negative integer solution? If yes, give such a solution.

(c) Can we use the result from (b) to decide if the marking M is reachable?

Solution:

(a) The following is the incidence matrix of the Petri net:

N =



t1 t2 t3 t4 t5

s1 −1 −1 0 0 1

s2 1 0 −1 0 0

s3 0 1 0 −1 0

s4 0 1 1 0 −1

s5 1 0 0 1 −1


(b) To solve the marking equation, we need to solve the matrix equation N ·X = M −M0 for X. This gives the following

matrix, together with its reduced row-echolon form (obtained e.g. by Gauss elimination):


−1 −1 0 0 1 −1
−1 0 −1 0 0 1

0 1 0 −1 0 1
0 1 1 0 −1 0
1 0 0 1 −1 0

 


1 0 0 1 −1 0
0 1 0 −1 0 1
0 0 1 1 −1 −1
0 0 0 0 0 0
0 0 0 0 0 0


The equation has no unique solution. The solution space is given by X = (0, 1,−1, 0, 0)+λ(−1, 1,−1, 1, 0)+µ(1, 0, 1, 0, 1)
for λ, µ ∈ Q. If we choose λ, ν ∈ Z, we obtain integer solutions, e.g. X = (0, 1,−1, 0, 0). If we additionally choose
µ > λ ≥ 0, we obtain non-negative integer solutions, e.g. X = (1, 1, 0, 0, 1).

(c) No, as even for an unreachable marking, the marking equation can have a non-negative integer solution. In fact, in the
net above, M is unreachable, which however can not be concluded by using marking equation alone.



Exercise 3.2 Marking equation in acyclic nets

Show the following: If a net N is structurally acyclic (there is no directed cycle with regard to the flow relation), then a
marking M is reachable from an initial marking M0 iff there exists a nonnegative integer solution X satisfying the marking
equation M = M0 + N ·X.

Solution: Necessity follows directly from the marking equation lemma, only sufficiency remains to be shown.

For a given acyclic net N , we show: For any marking M and initial marking M0 and vector X : T → N, if M = M0 + N ·X,
then M is reachable from M0. We show this by induction on n :=

∑
t∈T X(t).

Induction base: n = 0. Then X = 0 and M = M0.

Induction hypothesis: Let n > 0 and assume that for all M ′, M ′0 and X ′ : T → N with
∑
t∈T X

′(t) < n and M ′ = M ′0 +N ·X ′,
M ′ is reachable from M ′0.

As n > 0, there is a t with X(t) > 0. The net is acyclic, so from all t with X(t) > 0, let this t be one which is minimal with
regard to the topological order between them, i.e., there is no t′ with X(t′) > 0 such that there is a path from t′ to t. Define
Y : T → N with Y (t) := X(t)− 1 and Y (u) := X(u) if u 6= t. We have X = Y + ~t and so

M = M0 + N ·X = M0 + N ·
(
Y + ~t

)
= M0 + N · Y + N · ~t ≥ 0

For s ∈ •t we have s 6∈ t• due to acyclicity, so
(
N · ~t

)
(s) = N(s, t) = −1. None of the transitions in 〈Y 〉 ⊆ 〈X〉 put tokens

in s, so (N · Y )(s) ≤ 0. With that we get M0(s) ≥ 1, so t is enabled at M0. With M0
t−→ M1 we have M1 = M0 + N · ~t

and M = M1 + N · Y . We can apply the induction hypothesis to M , M1 and Y to obtain that M is reachable from M1. By
extension, M is also reachable from M0.

Exercise 3.3 Transition liveness levels

For a Petri net (N,M0) and a transition t of N , we define liveness levels in the following way:

• t is L0-live (or dead) if t occurs in no firing sequence σ of N enabled at M0.

• t is L1-live if t occurs in some firing sequence σ of N enabled at M0.

• t is L2-live if for any k ∈ N, t occurs at least k times in some firing sequence σ of N enabled at M0.

• t is L3-live if t occurs infinitely often in some infinite firing sequence σ of N enabled at M0.

• t is L4-live if for any reachable marking M ∈ [M0〉, t occurs in some firing sequence σ of N enabled at M , i.e. t can
always fire again. Note: If this holds for all transitions, this coincides with our standard definition of liveness for Petri
nets.

(a) For each i ∈ {0, 1, 2, 3}, exhibit a Petri net (N,M0) and a transition t of N such that t is Li-live, but not Li+i-live.

(b) For each i ∈ {0, 1, 2}, sketch an algorithm to decide the following problem:

Given a Petri net (N,M0) and a transition t, is t Li-live?

Note: You may also try to find a decision procedure for L3-liveness, however this is non-trivial, so don’t spend too much
time on it.

Solution:

(a) • In the following net, t1 is L0-live (dead). As t1 is dead, it cannot be Li-live for i ≥ 1.

s1 t1

• In the following net, t1 is L1-live, as it is enabled at M0, but not L1-live, as it can fire at most once.

s1 t1

• In the following net, t3 is L2-live, as for any k ∈ N, it occurs k times in the firing sequence σ = tk1t2t
k
3 . However, it is

not L3-live, as it needs to be enabled by the occurrence of t2, after which t1 cannot occur anymore, so the number
of times t3 can occur is limited by the number of tokens in s2 after the occurrence of t2.



s1

s2

s3

t1

t2

t3

• In the following net, t3 is L3-live, as it occurs infinitely often in σ = t1t1t1 . . .. However, it is not L4-live, as it is
disabled by the occurrence of t2.

s1 t1t2

(b) • A transition t is L0-live (dead) iff it is not L1 live. To decide these two properties, check if the marking M putting
one token in each s ∈ •t and no tokens elsewhere is coverable. If yes, t can be enabled, so it is L1-live. Otherwise, t
is L0-live (dead).

• To decide L2-liveness, first add a new place s+ to the Petri net as an output place of t. Then check if s+ is
unbounded, e.g. by constructing the coverability graph, and checking if an ω-marking M with M(s+) = ω exists in
the graph. If yes, we can put an arbitrary number of tokens in s+, especially k tokens for any k ∈ N, so t can occur
k times and it is L2-live. Otherwise, the number of times t can occur is also bounded, so it is not L2-live.

• For L3-liveness, if t is L3-live, then there is an occurrence sequence σ enabled at M0 where t occurs infinitely often.

This σ can be split up as σ = σ1tσ2tσ3tσ4 . . .. Therefore M0
σ1−→ M1

t−→ M ′1
σ2−→ M2

t−→ M ′2
σ3−→ M3

t−→ M ′3
σ4−→ . . ..

By Dickson’s lemma, there are i, j with j > i and Mj ≥Mi.

Then if t is L3-live, there exist occurrence sequences τ, τ ′ and markings M,M ′ with M0
τ−→ M

τ ′

−→ M ′ such that
M ′ ≥M and t occurs in τ ′ (choose M = Mi and M ′ = M ′j). On the other hand, if such occurence sequences exist,
then t is L3-live, as we can repeat τ ′ infinitely often.

Sketch to decide the existance of sequences M0
τ−→M

τ ′

−→M ′ with M ′ ≥M and t occuring in τ ′:

We create a net that in the first phase simulates τ in both the original net and a copy the net. Then control is
transferred nondeterministically to the second phase, in which τ ′ is simulated and only the copy of the net is affected,
while the tokens in the original net are frozen. Firing t in the second phase produces an additional token in a new
place s+. Finally, in a third phase, tokens are removed either both from a place in the original net and its copy,
only from places in the copy, or from s+.

We have that if M0
τ−→M

τ ′

−→M ′, then our net can simulate τ and τ ′ such that first, we have the marking M in the
original net and M ′ in the copy of the net. If t occurs in τ ′, we also have s+ marked. We can then check M ′ ≥M
by removing tokens simultaneously from M and M ′ or only from M ′, until we have M = M ′ = 0. We can remove
tokens from s+ until only one token is left. Then, the marking where there is one token in s+, no tokens in the
original net and its copy and control is in the third phase is reachable iff if there are sequences τ, τ ′ with above
property iff t is L3-live.

Note: This problem is also in EXPSPACE, as it can be shown that the length of the shortest occurrence sequence
ττ ′ is bounded by an exponential function, e.g. by adapting the proof of Rackoff’s theorem.

Exercise 3.4 Number of tokens in bounded nets

Give a family of bounded Petri nets {Nk}k∈N such that the size of Nk is bounded by O(k) (that is, there is a c ∈ N such that
for all Nk = (S, T, F,M0), we have |S| + |T | + |F | ≤ ck and ∀s ∈ S : M0(s) ≤ ck), but each Nk has a reachable marking M

and a place s with M(s) ≥ 22
k

.

Hint: Construct a net that doubles the number of tokens in a place. Modify it so that one occurrence sequence for doubling
removes exactly one token from a certain place. Use this construct again or the construct from the lecture to put 2k tokens
into that place.

Solution: In the following net, we can fire t1t2t3t4t4 to duplicate a token in s1. If there are n tokens in s1, the firing sequence
tn1 t

n
2 t
n
3 t

2n
4 doubles the number of tokens in s1.
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By modifying the net as follows, we ensure that to fire tn1 t
n
2 t
n
3 t

2n
4 , we need to move the token from s6 to s5 and back and remove

one token from s0. Now the net is bounded, and with k tokens in s0, we can put up to 2k tokens in s1.

s1

s2 s3

s4

s5

s6

k

s0

t1

t2 t3

t4

t5 t6

We can duplicate the net and use the output place s1 as the input place s0 for the other net. In the following net, we can fire

the transitions in the right net to put 2k tokens in s′1, and then fire the transitions in the left net to put 22
k

tokens in s1. The
net has a constant size, and we have M(s) ≤ k for all places s.

s1

s2 s3

s4

s5

s6

s′1

s′2 s′3

s′4

s′5

s′6

k

s0

t1

t2 t3

t4

t5 t6

t′1

t′2 t′3

t′4

t′5 t′6

The construction could even be repeated, to obtain a family of bounded Petri nets of size O(k) with a reachable marking with

222
···2︸ ︷︷ ︸

k times

tokens, i.e. an exponential tower of height k.


