
Technische Universität München (I7) Summer term 2016
Prof. J. Esparza / P. Meyer Friday 13th May, 2016

Solution

Petri nets – Homework 2

Discussed on Wednesday 18th and Thursday 19th May, 2016.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 2.1 Tunnel modelling

Let us consider a tunnel connecting the TUM Campus in Garching with the Main Campus in Munich. Cars can enter the
tunnel on either side and eventually exit the tunnel on the other side. A partial model of this (fictive) tunnel is given below.

tunnel

s1 s2 s3 s4

s5s6s7s8

arrive1 leave1

arrive2leave2

(a) Extend the partial model above to a Petri net with places and transitions to keep track of the cars on each lane. Note
that cars should flow from s2 to s3 and from s6 to s7. The four transitions model the environment that generates cars
and absorbs cars.

(b) The capacity of the tunnel is limited and no more than 10 cars are allowed to be in the tunnel at the same time (on both
lanes together). Add this capacity constraint to your model. There should be no unnecessary waiting; for example, it
cannot be the case that the tunnel remains empty while cars are queuing.

(c) As there are construction works, the tunnel is limited to one lane in one direction at time. A control system is added
that can switch directions (of course only when the tunnel is empty). Modify your Petri net to incorporate this control
system. Make sure that the model respects safety (no cars driving in opposite direction). However, the model does not
need to be “fair”.

Acknowledgment: Exercise designed by Wil van der Aalst et al. (TU Eindhoven).

Solution: (This solution is just an example. There are many possible solutions to any given modeling exercise)

(a)

s1 s2 s3 s4

s5s6s7s8

car-on-lane1

car-on-lane2

arrive1 leave1

arrive2leave2

enter1 exit1

enter1exit1

(b)

s1 s2 s3 s4

s5s6s7s8

car-on-lane1

car-on-lane2

cap 10

arrive1 leave1

arrive2leave2

enter1 exit1

enter1exit1

(c)

s1 s2 s3 s4

s5s6s7s8

car-on-lane1

car-on-lane2

cap 10lane1 lane2

arrive1 leave1

arrive2leave2

enter1 exit1

enter1exit1 switch1

1010

switch2

10 10

The following is an alternative solution, which only switches if there are cars waiting:

s1 s2 s3 s4

s5s6s7s8

car-on-lane1

car-on-lane2

cap1

10

cap2

arrive1 leave1

arrive2leave2

enter1 exit1

enter1exit1

switch1

10

10

switch2

10

10

The above solution can be made to avoid unnecessary switching in the following way:

s1 s2 s3 s4

s5s6s7s8

car-on-lane1

car-on-lane2

cap1

10

cap2

arrive1 leave1

arrive2leave2

enter1 exit1

enter1exit1

switch1

9

10

switch2

9

10

Exercise 2.2 Coverability

Construct the coverability graph for the Petri net below.

s1 s2

s3

s4

t1

t2

t3

t4

Solution: The coverability graph is as follows:

(1, 0, 0, 0)

(0, 1, 0, 0)

(0, 1, 0, ω)

(0, ω, 0, ω)

(0, 0, 1, ω)

(0, ω, ω, ω)

t1

t2

t4

t3

t3

t4

t2

t2, t4 t2, t3, t4

Exercise 2.3 Uniqueness of the coverability graph

In the algorithm for the construction of the coverability graph, the search strategy (breadth-first or depth-first search and
traversal order for visiting child nodes) is not specified. Show that the coverability graph obtained is not unique by exhibiting
a Petri net and two different coverability graphs for this Petri net obtained by the algorithm with different search strategies.

Solution: Take the following Petri net:

s1 s2

t1

t2

t3

If, for the construction of the coverability graph, the path M0 = (1, 0)
t1−→ (0, 1)

t2−→ (1, 0)
t3−→ (1, 1) is first explored, then (1, 1)

strictly covers and is reachable from (0, 1) and (1, 0), so the node (ω, ω) is added to the coverability graph. The resulting graph
is:

(1, 0) (0, 1)

(ω, ω) (0, ω)

t1

t2
t3 t3

t2

t1, t2, t3 t3

If instead, the path M0 = (1, 0)
t3−→ (1, 1) is explored first, then (1, 1) only strictly covers and is reachable from (1, 0), so the

node (1, ω) is added to the coverability graph, resulting in the following graph:

(1, 0) (0, 1)

(ω, ω) (0, ω)

(1, ω)

t1

t2
t3

t3

t2
t1

t3

t2

t1, t2, t3 t3

Exercise 2.4 Reachability in Petri nets with weighted arcs

Reduce the reachability problem for Petri nets with weighted arcs to the reachability problem for Petri nets without weighted
arcs.

For that, describe an algorithm that, given a Petri net with weighted arcs N = (S, T,W,M0) and a marking M , constructs a
Petri net N ′ = (S′, T ′, F ′,M ′

0) and a marking M ′ such that M is reachable in N if and only if M ′ is reachable in N ′. The
algorithm should run in polynomial time (you may assume unary encoding for the weights in the input, although it is also
possible with a binary encoding).

Apply the algorithm to the Petri net below with the target marking M = (2, 0, 0) and give the resulting Petri net N ′ and
marking M ′.

s1 s2 s3t1
2

t2
2

t3

Solution: We use the following approach: We replace each place in the Petri net with weighted arcs with a ring of places in
the Petri net without weighted arcs. The size of the ring is given by the maximum input or output weight, and the sum of the
tokens in the ring represent the number of tokens in the original place. The tokens can move around freely in the ring, and a
transition with a weighted arc that puts or takes k tokens into or out of the original place is now connected with unweighted
arcs to k of the places in the ring.

Formally, let S = {s1, . . . , sn} be the places of the Petri net N . For each si ∈ S, define an integer ki by

ki := max({W (t, si) | t ∈ T} ∪ {W (si, t) | t ∈ T})

The places in the Petri net N ′ are the sets of ring places for each original place. The transitions are the original transition,
plus a fresh set of ring transitions.

S′ =
⋃
si∈S
{si,j | 1 ≤ j ≤ ki} T ′ = T] {tsi,j | si,j ∈ S′}

The flow relation connects each transition t to a number of ring places si,j given by the weight between t and si. We also
connect the ring places and transitions cyclically.

F ′ ={(si,j , t) ∈ S′ × T |W (si, t) ≥ j} ∪ {(t, si,j) ∈ T × S′ |W (t, si) ≥ j} ∪
{(si,j , tsi,j) | si,j ∈ S′} ∪ {(tsi,j , tsi,1+(j mod ki)

) | si,j ∈ S′}

The initial and target marking are given by having all the tokens in the first place of each ring.

M ′
0(si,j) =

{
M0(si) if j = 1

0 otherwise
M ′(si,j) =

{
M(si) if j = 1

0 otherwise

By construction, if M is reachable in N , then there is a reachable marking M ′ in N ′ with
∑
jM

′(si,j) = M(si) for all si ∈ S.
We can use the ring transitions to move all tokens in si,j to si,1 to reach the target marking.

Applying the construction to the Petri net and marking above gives us the Petri net below, along with the marking M ′ given
by M ′(s1,1) = 2 and M ′(s) = 0 for all places s 6= s1,1.

s1,1

s1,2

s2,1

s3,1

s3,2

ts1,1ts1,2

ts2,1

ts3,1ts3,2

t1 t2

t3

Exercise 2.5 Monotonicity of properties

Exhibit counterexamples that disprove the following conjectures:

(a) If (N,M0) is bounded and M ≥M0, then (N,M) is bounded.

(b) If (N,M0) is live and M ≥M0, then (N,M) is live.

(c) If (N,M0) is live and bounded and M ≥M0, then (N,M) is bounded.

Hint: Add places and arcs to the net below to obtain a solution.

s1 s2

s3

s4

t1

t2

t3t4

Solution:

(a) The following Petri net is bounded without tokens, but not bounded with the blue token in s1, as repeatedly firing t1
can put an arbitrary number of tokens in s2.

s1 s2t1

(b) The following Petri net is live with the black tokens, but not live with the additional blue token in s3, as firing t2 leads
to a dead marking.

s1

s2 s3

t1 t2

t3

(c) The following Petri net is live and bounded with the black tokens, but not bounded with the additional blue token in s4,
as repeatedly firing t1t2 can put an arbitrary number of tokens in s5.

s1 s2

s3

s4

s5

t1

t2

t3t4

Exercise 2.6 Backwards reachability algorithm

Apply the backwards reachability algorithm to the Petri net below to decide if the marking M = (0, 0, 2) can be covered.
Record all intermediate sets of markings with their finite representation of minimal elements.

s1

s2 s3

t1

t2

t3

Solution:

For the backwards reachability algorithm, it can be helpful to construct the reverse net, with all arcs inverted, to compute the
predecessors of markings. Then start with the target marking M and add tokens as necessary for firing transitions.

s1

s2 s3

t1

t2

t3

We start with m0 = {(0, 0, 2)} and compute the predecessors for (0, 0, 2) for each transition t, that is, the minimal marking M

such that M
t−→M ′ with M ′ ≥ (0, 0, 2).

pre((0, 0, 2), t1) = pre((1, 1, 2), t1) = (1, 0, 2)

pre((0, 0, 2), t2) = (1, 1, 1)

pre((0, 0, 2), t3) = pre((1, 0, 2), t3) = (0, 0, 3)

After adding the new markings to m0 and eliminating non-minimal markings, our new set is m1 = {(0, 0, 2), (1, 1, 1)}. For the

new marking (1, 1, 1), we compute the predecessors:

pre((1, 1, 1), t1) = (1, 0, 1)

pre((1, 1, 1), t2) = (2, 2, 0)

pre((1, 1, 1), t3) = (0, 1, 2)

We add the new markings, take the minimal elements and obtain m2 = {(0, 0, 2), (1, 0, 1), (2, 2, 0)}. For (1, 0, 1) and (2, 2, 0),
we compute the predecessors:

pre((1, 0, 1), t1) = pre((1, 1, 1), t1) = (1, 0, 1)

pre((1, 0, 1), t2) = (2, 1, 0)

pre((1, 0, 1), t3) = (0, 0, 2)

pre((2, 2, 0), t1) = (2, 1, 0)

pre((2, 2, 0), t2) = pre((2, 2, 1), t2) = (3, 3, 0)

pre((2, 2, 0), t3) = (1, 2, 1)

The new minimal marking set is now m3 = {(0, 0, 2), (1, 0, 1), (2, 1, 0)}. Next we compute the predecessors for (2, 1, 0):

pre((2, 1, 0), t1) = (2, 0, 0)

pre((2, 1, 0), t2) = pre((2, 1, 1), t2) = (3, 2, 0)

pre((2, 1, 0), t3) = (1, 1, 1)

The new set is m4 = {(0, 0, 2), (1, 0, 1), (2, 0, 0)}. For M ′ = (2, 0, 0) ∈ m4, we have M0 ≥ M ′, therefore we can conclude that
M is coverable from M0.

If instead we would continue, we would compute the predecessors for (2, 0, 0):

pre((2, 0, 0), t1) = pre((2, 1, 0), t1) = (2, 0, 0)

pre((2, 0, 0), t2) = pre((2, 0, 1), t2) = (3, 1, 0)

pre((2, 0, 0), t3) = (1, 0, 1)

No new minimal markings are obtained, so we would have reached a fixpoint.

Exercise 2.7 Suffix sequence

Give a procedure to decide the following problem:

Given a Petri net (N,M0) and a transition sequence σ, is there a transition sequence σ′ such that σ′σ is enabled at M0?

For the procedure, you may use any already known decision procedures and algorithms such as coverability graph and backwards
reachability, or you may adapt those algorithms or use parts of them.

Solution: Let σ = t1t2 . . . tn. Consider the following algorithm:

1: m← {~0}
2: for i from n to 1 do
3: m← min(pre(m, ti))

4: if ∃M ∈ m : M is coverable from M0 then

5: return there is a sequence σ′ s.t M0
σ′σ−−→.

6: else

7: return there is no sequence σ′ s.t M0
σ′σ−−→.

Basically, we fire σ backwards, starting from all markings (the upward closed set with the zero marking as the minimal
element). We obtain the set m of all markings where σ is enabled (again an upward closed set). We then check if one the
minimal markings of the set m is coverable from M0, and if yes, there is a sequence σ′ from which we can reach an element of
m, and thus fire σ.

The existance of a coverable element in m can be checked with the coverability graph or the backwards reachability algorithm.
With the backwards reachability algorithm, we can directly start with m as the initial set of minimal markings.

Exercise 2.8 Independence of boundedness, liveness and cyclicity

Definition 2.8.1 (Cyclic Petri nets). A Petri net (N,M0) is cyclic if, loosely speaking, it is always possible to return to the
initial marking. Formally: ∀M ∈ [M0〉 : M0 ∈ [M〉.

Show that the properties liveness, boundedness and cyclicity are independent of eath other by exhibiting eight Petri nets, one
for each possible combination of the three properties and their negations.

Hint: A live, bounded, but not cyclic Petri net is hard to find. A possible solution can be obtained by simply adding arcs to
the net below.

s1 s2

s3 s4

t1

t2

t3

Solution: Let L,B and C be abbreviations for live, bounded and cyclic, and L, B and C for their negations.

LBC
s1 t1

LBC
s1 t1

LBC
s1t1 t2

LBC
s1

s2

t1 t2

t3

LBC
s1 s2

s3

s4

t1

t2 t3

LBC
s1 t1

LBC
s1t1

LBC
s1

s2

t1

t2

For most nets, it is clear that they have the desired properties. To see that the net LBC is indeed live, bounded, but not
cyclic, we can construct the reachability graph, with the markings given as M = (s1, s2, s3, s4):

(1, 0, 1, 0)

(0, 1, 1, 0)

(1, 0, 0, 1) (0, 1, 0, 1)

t1

t2
t1

t3

