
Technische Universität München (I7) Summer term 2016
Prof. J. Esparza / P. Meyer Thursday 14th April, 2016

Solution

Petri nets – Homework 1

Discussed on Thursday 21st April, 2016.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 1.1 Alcohol burning

Model the chemical reaction C2H5OH + 3O2 2CO2 + 3H2O as a Petri net. Use weighted arcs as needed.

Assume that there are two steps: first each molecule is disassembled into its atoms and then these atoms are assembled into
other molecules. The net should have places for each of the molecules, and the marking where there are two tokens in the place
CO2 and three tokens in the place H2O should be reachable if and only if there are at least one token in the place C2H5OH
and three tokens in the place O2 in the initial marking.

Acknowledgement: Exercise taken from www.workflowcourse.com

Solution: (This solution is just an example. There are many possible solutions to any given modeling exercise)

C2H5OH O2

C H O

CO2 H2O

2 6 2

2 2

Exercise 1.2 Manufacturing process

In a “just-in-time” manufacturing system, items can be ordered to be produced, which is signaled by an “order” event. An
order is acknowledged by a “receive” event, and then manufactured by a “produce” event. After that, the item is checked by
quality control and can either be ready to be sent (event “positive”) or be discarded (event “negative”). In the positive case,
the item is sent (event “send”) to the customer. In the negative case, a replacement item is scheduled to be produced.

An item can be in any of the states “ordered”, “received”, “produced”, “to be sent”, “sent” “discarded”. Suppose that there
are initially two orders.

(a) Model the system as a Petri net, where there are transitions for each event and places for each possible state of an item.
You may have additional places and transitions. Do not use weighted arcs.

(b) Now adapt your model such that there is at most one item in the “produced” state at any time, and further items have
to wait for that item to be quality checked before they are produced.



Solution: (This solution is just an example. There are many possible solutions to any given modeling exercise)

(a)

ordered received produced

to be sent

discarded

sent

order receive produce

positive

negative

send

(b) The capacity constraint can be enforced by introducing an additional place that has a token iff there is no token in
“produced” and adding arcs from the transitions that affect “produced” accordingly.

ordered received produced

produced empty

to be sent

discarded

sent

order receive produce

positive

negative

send

Exercise 1.3 Nets and subnets

Consider the net N = (S, T, F ) defined by S = {s1, s2}, T = {t1, t2} and F = {(s1, t1), (t1, s2), (s2, t1), (s2, t2), (t2, s2), (t2, s1)}.

(a) Draw the net N .

(b) Is the net N ′ = (S′, T ′, F ′) defined by S′ = {s2}, T ′ = {t2} and F ′ = {(s2, t2), (t2, s2), (t2, s1)} a subnet of N?

Solution:

(a)

s1

s2

t1

t2

(b) No, N ′ is not even a net, as (t2, s1) ∈ F ′ * (S′ × T ′) ∪ (T ′ × S′).

s2

t2

Exercise 1.4 Reachable markings

Consider the following Petri net:

s1

s2 s3

s4t1

t2

t3

(a) Give the preset and postset of each place and each transition.



(b) Which transitions are enabled at M0?

(c) Construct the reachability graph of the Petri net.

(d) Does the number of reachable markings increase or decrease if we remove i) place s1 and its adjacent arcs ii) place s3
and its adjacent arcs?

Acknowledgment: Exercise designed by Wil van der Aalst et al. (TU Eindhoven).

Solution:

(a)

•s1 = {} s1
• = {t1} •t1 = {s1, s4} t1

• = {s2}
•s2 = {t1} s2

• = {t2} •t2 = {s2} t2
• = {s3, s4}

•s3 = {t2} s3
• = {t3} •t3 = {s3, s4} t3

• = {s4}
•s4 = {t3} s4

• = {t1, t3}

(b) enabled(M0) = {t1, t3}.

(c) With the markings as a fixed vector M = (s1, s2, s3, s4), the reachability graph is as follows. The inital marking is marked
with a double border.

(1, 0, 1, 2)

(0, 1, 1, 1)

(0, 0, 2, 2)

(1, 0, 0, 2)

(0, 1, 0, 1)

(0, 0, 1, 2) (0, 0, 0, 2)

t1

t2

t3

t3

t3

t1

t2
t3

(d) i) The number of reachable markings increases, as all previously reachable markings without the s1 component are
still reachable and all different, but now t1 is enabled for instance at M = (s2, s3, s4) = (1, 0, 1), leading to the new
marking M ′ = (2, 0, 1).

ii) The number of reachable markings decreases, as now firing t3 does not change the marking, and the other transitions
do not become enabled at any other marking.

Exercise 1.5 Model analysis (with tools)

For the Petri net below modelling a bank contract, check if the following properties hold. You may use tools such as PIPE,
APT or Lola to check the properties. The input files for the net are given in appropriate format on the homepage. You may
then use the tools with the integrated modules to check properties or construct the reachability graph.

(a) Boundedness: Is the Petri net bounded, i.e., for every place s, is there a number b ≥ 0 such that M(s) ≤ b for every
reachable marking M?

(b) Liveness: Is the net live, i.e., for every reachable marking M and every transition t, is there a marking M ′ reachable
from M that enables t?

(c) Deadlock freedom: Is the Petri net deadlock-free, i.e., is there a reachable marking M that enables no transitions?



s1

s2

s3

req

bill

s4

fwd

inf

s5

s6

s7

t1

t2

t3

t4

t5

t6

t7 t8

t9

Client Broker Credit

Solution:

(a) Boundedness: The Petri net is bounded.

With PIPE: Launch PIPE and open the file exercise-1.5.xml. After starting the “State Space Analysis” module and
clicking on “Analyse”, the result shows: “Bounded: true”. This can be verified by constructing the reachability graph
with the “Reachability/Coverability Graph” module.

With APT: Execute java -jar apt.jar bounded exercise-1.5.apt. The result shows “bounded: Yes”.

With Lola: Lola can only check boundedness for a given place. Execute
lola --search=cover --encoder=full --formula="AG s < oo" exercise-1.5.lola

to show that place s is bounded. This check can be repeated for every place s ∈ S.

(b) Liveness: The Petri net is not live.

With PIPE: PIPE has no module for directly checking liveness, however the reachability graph can be inspected for
bounded nets.

With APT: Execute java -jar apt.jar strongly live exercise-1.5.apt. The result shows “strongly live:

No”. Note: APT can only check liveness for bounded nets.

With Lola: Lola can only check liveness for a given transition. Execute lola --formula="AGEF FIREABLE(t1)"

exercise-1.5.lola to show that transition t is live. This check can be repeated for every transition t ∈ T .

(c) Deadlock freedom: The net is not deadlock free (it has a deadlock).

With PIPE: Launch PIPE and open the file exercise-1.5.xml. After starting the “State Space Analysis” module and
clicking on “Analyse”, the result shows: “Deadlock: true”. The dead marking is shown in the reachability graph in red.

With APT: APT has no module to directly check for deadlocks.

With Lola: Execute lola --formula="EF DEADLOCK" exercise-1.5.lola. The result shows “yes”. A witness state
and path can be produced by additionally passing the parameters -s and -p.

Exercise 1.6 Exchange Lemma

Let u and v be transitions of a net satisfying •u ∩ v• = ∅. Show: If M vu−→ M ′ then M
uv−→ M ′.

Solution: We prove the following: If M
v−→ L

u−→ M ′ for arbitrary markings M,L,M ′ and transitions u, v with •u ∩ v• = ∅,
then M

v−→ L′ u−→ M ′ for some marking L′.

We show:

• M(s) ≥ 1 for every s ∈ •v

• M(s) ≥ 1 for every s ∈ •u

• M(s) ≥ 2 for every s ∈ •v ∩ •u



Assume s ∈ •v. Then M(s) ≥ 1 because M enables v.

Assume s ∈ •u. Then L(s) ≥ 1 because L enables u. Since •u∩ v• = ∅ we have s /∈ v•. So the number of tokens on s does not
increase by the occurence of v, i.e. M(s) ≥ L(s). Therefore M(s) ≥ 1.

Assume s ∈ •v ∩ •u. Again, L(s) ≥ 1 because L enables u and s ∈ •u. Since s ∈ •v and s /∈ v• we get L(s) = M(s) − 1. So
M(s) ≥ 2.

We have that M enables u because M(s) ≥ 1 for every place s ∈ •u. Let M
u−→ L′, we show that L′ enables v. Let s be a place

of •v. If s /∈ •u then L′(s) ≥ M(s) ≥ 1. If s ∈ •u then L′(s) ≥ M(s)− 1 and M(s) ≥ 2 whence L′(s) ≥ 1. So L′ marks every
place in •v, and therefore L′ enables v.

The sequences uv and vu have the same effect on the number of tokens in each place, therefore both lead from M to the same
marking, namely to M ′. This completes the proof of the claim.


