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Exercise 1 5P

Construct the coverability graph of the Petri net below.
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Exercise 2 6P

Reduce the coverability problem to the reachability problem.

For that, describe an algorithm that, given a Petri net (N,M0) and a marking M , constructs a Petri net
(N ′,M ′

0) and a marking M ′ such that M ′ is reachable in N ′ from M ′
0 if and only if M is coverable in N

from M0. The algorithm should run in polynomial time. You don’t have to describe N ′ formally.

Give a brief argument showing that your construction is correct, i.e. show that if M is coverable in N from
M0, then M ′ is reachable in N ′ from M ′

0, and if M ′ is reachable in N ′ from M ′
0, then M is coverable in N

from M0.

Solution:

Informal answer (sufficient for full points):

Let N ′ be a copy of N and for each place of N , add a transition to N ′ with that place as its only input place and no output
places. Let the initial marking and target marking for N ′ be the same as for N , i.e. M ′0 = M0 and M ′ = M .

If M is coverable in N by some marking M1 ≥ M , then we can also reach M1 in N ′, and fire the additional transitions to
reduce tokens until we reach M = M ′ in N ′.

On the other hand, if M ′ is reachable in N ′, then we can execute the sequence to reach M ′ without firing the additional
transitions. That sequence is also enabled in N at M0 and leads to a marking M1 ≥M ′ = M , so M is coverable in N .

Formal answer (given for clarity):

Define the net N ′ = (S′, T ′, F ′) with S′ = S, T ′ = T ] {ts | s ∈ S} and F ′ = F ∪ {(s, ts) | s ∈ S} and the markings M ′0 = M0

and M ′ = M . Below is a sketch of the construction:
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If M is coverable in N from M0, then there is a marking M1 and an occurrence sequence σ with M0
σ−→M1 in N and M1 ≥M .

Then also M ′0
σ−→ M1 in N ′. From M1, for each s ∈ S, we can fire ts exactly M1(s) −M(s) times. This yields our target

marking M = M ′, so M ′ is reachable in N ′ from M ′0.

On the other hand, if M ′ is reachable in N ′ from M ′0, then there is an occurrence sequence σ with M ′0
σ−→M ′ in N ′. Let τ be

the occurrence sequence obtained from σ by removing all occurrences of ts for s ∈ S. As every ts only removes tokens in N ′,
by the monotonicity property of Petri nets, τ is also enabled at M ′0 in N ′ and as τ only contains transitions from T , it is also

enabled at M0 in N . This yields M0
τ−→M1 in N for some marking M1 with M1 ≥M ′ = M , so M is coverable in N from M0.

Exercise 3 9P=3+3+3

(a) Exhibit a net having a positive T-invariant but no positive S-invariant.

(b) Exhibit a net having a positive S-invariant but no positive T-invariant.

(c) Exhibit a net with a minimal siphon containing two input places of the same transition.

Solution:

(a) In the following net, J = (1, 1) is a positive T-invariant, but any S-invariant I has to satisfy I(s1) = 0, therefore there is
no positive S-invariant.

s1t1 t2

(b) In the following net, I = (1, 1) is a positive S-invariant, but any T-invariant J has to satisfy J(t1) = 0, therefore there is
no positive T-invariant.

s1 s2t1

(c) In the following net, R = {s1, s2} is a minimal siphon with |R ∩ •t3| = 2.
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Exercise 4 10P=3+3+4

Consider the following Petri net:
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(a) Give a basis of the space of S-invariants of the net.

(b) Find all three minimal traps of the net.

(c) Use (a) and (b) to show that s2 and s5 are mutually exclusive, i.e. there is no reachable marking M
with M(s2) ≥ 1 and M(s5) ≥ 1.

Solution:

(a) Any S-invariant I needs to satisfy:

t1 : I(s2) = I(s1)

t2 : I(s1) + I(s3) = I(s2) + I(s4)

t3 : I(s3) = I(s4)

t4 : I(s1) + I(s3) = I(s1) + I(s5)

t5 : I(s5) = I(s4)

From these constraints, we can derive I(s1) = I(s2) and I(s3) = I(s4) = I(s5). Any S-invariant is defined by specifying
I(s1) and I(s3), giving us two invariants for the basis, for instance I1 = (1, 1, 0, 0, 0) and I2 = (0, 0, 1, 1, 1).

(b) For any semi-positive S-invariant I, the set of places s with I(s) > 0 form a trap. From I1 and I2, we obtain the traps
R1 = {s1, s2} and R2 = {s3, s4, s5}, which are already minimal.

The third trap can be found with the trap constraints, as any trap R needs to satisfy:

t1 : s2 ∈ R =⇒ s1 ∈ R
t2 : s1 ∈ R ∨ s3 ∈ R =⇒ s2 ∈ R ∨ s4 ∈ R
t3 : s4 ∈ R =⇒ s3 ∈ R
t4 : s1 ∈ R ∨ s3 ∈ R =⇒ s1 ∈ R ∨ s5 ∈ R
t5 : s5 ∈ R =⇒ s4 ∈ R

By the implications, we see that if s2 or s5 are in the trap, then we obtain a superset of R1 or R2. Therefore, if we look
for a trap without s2 and s5, then the only satisfying assignment for a proper trap is R3 = {s1, s3, s4}, which is the last
minimal trap.

(c) Let M be a reachable marking. From I1 and I2, we obtain the positive S-invariant I3 = I1 + I2 = (1, 1, 1, 1, 1), and as
M · I3 = M0 · I3, we get M(s1) +M(s2) +M(s3) +M(s4) +M(s5) = 2. From R3, as M0(R3) ≥ 1, we get M(R) ≥ 1 and
therefore M(s1) +M(s3) +M(s4) ≥ 1. In combination, we get M(s2) +M(s5) ≤ 1, which shows mutual exclusion.

Exercise 5 10P=3+3+4

(a) Prove: If (N,M0) is a live and bounded Petri net, then N has a positive T-invariant.

(b) Prove: If (N,M0) is a live and bounded free-choice system and M ′
0 ≥M0, then (N,M ′

0) is also live and
bounded.

(c) Prove: Let N be a net and M a marking of N . The equation M = N · X has a nonnegative integer
solution X : T → N iff there is marking M0 of N such that M + M0 is reachable from M0 in N .

Note: M + M0 is defined as the marking with (M + M0)(s) = M(s) + M0(s).



Solution:

(a) Let (N,M0) be a live and bounded Petri net. By liveness there is an infinite occurrence sequence σ1σ2σ3 . . . such that
every σi is a finite occurrence sequence containing all transitions of N . We have

M0
σ1−→M1

σ2−→M2
σ3−→ · · · .

By boundedness there are indices i < j such that Mi = Mj . So the sequence σi+1 . . . σj satisfies

Mi
σi+1...σj−−−−−−→Mi

and so J = ~σi+1 + · · ·+ ~σj is a T-invariant of N . Further, J is positive because every transition occurs at least once in
σi+1 . . . σj .

(b) Let (N,M0) be a live and bounded free-choice system and M ′0 ≥M0.

By Commoner’s Liveness Theorem, every proper siphon of N contains a trap marked at M0. As M ′0 ≥ M0, every such
trap is also marked at M ′0, therefore the system (N,M ′0) is also live.

By Hack’s Boundedness Theorem, every place of N belongs to an S-component, therefore (N,M ′0) is also bounded.

(c) (⇒): Let X be a nonnegative integer solution of M = N ·X. Then let M0 be a marking sufficiently large to consecutively
enable all transitions t ∈ T exactly X(t) times in some order. Clearly, such a marking exists. Let σ be a corresponding

occurrence sequence enabled at M0 with ~σ = X. We then have M0
σ−→ M1 for some marking M1 and with the marking

equation, we have M1 = M0 + N · ~σ = M0 + N ·X = M0 +M , so M0 +M is reachable from M0.

(⇐): Let M0 be a marking of N such that M +M0 is reachable from M0 in N . Then there is an occurence sequence σ

with M0
σ−→ M + M0. With the marking equation, we have M + M0 = M0 + N · ~σ and, by subtracting M0 from both

sides, M = N · ~σ. So X := ~σ is a nonnegative integer solution of M = N ·X.


