SOLUTION

Petri nets - Endterm

Last name:

First name:

Student ID no.:

Signature:

- If you feel ill, let us know immediately.
- Please, do not write until told so.
- You will be given $\mathbf{9 0}$ minutes to fill in all the required information and write down your solutions.
- Don't forget to sign.
- Write with a non-erasable pen, do not use red or green color.
- You are not allowed to use auxiliary means other than your pen.
- You may answer in English or German.
- Please turn off your cell phone.
- Should you require additional scrap paper, please tell us.
- You can obtain $\mathbf{4 0}$ points in the exam. You need $\mathbf{1 7}$ points in total to pass (grade 4.0).
- Don't fill in the table below.
- Good luck!

Ex 1	Ex 2	Ex 3	Ex 4	Ex 5	\sum

Construct the coverability graph of the Petri net below.

Solution:

Exercise 2

Reduce the coverability problem to the reachability problem.
For that, describe an algorithm that, given a Petri net (N, M_{0}) and a marking M, constructs a Petri net ($N^{\prime}, M_{0}^{\prime}$) and a marking M^{\prime} such that M^{\prime} is reachable in N^{\prime} from M_{0}^{\prime} if and only if M is coverable in N from M_{0}. The algorithm should run in polynomial time. You don't have to describe N^{\prime} formally.
Give a brief argument showing that your construction is correct, i.e. show that if M is coverable in N from M_{0}, then M^{\prime} is reachable in N^{\prime} from M_{0}^{\prime}, and if M^{\prime} is reachable in N^{\prime} from M_{0}^{\prime}, then M is coverable in N from M_{0}.

Solution:

Informal answer (sufficient for full points):
Let N^{\prime} be a copy of N and for each place of N, add a transition to N^{\prime} with that place as its only input place and no output places. Let the initial marking and target marking for N^{\prime} be the same as for N, i.e. $M_{0}^{\prime}=M_{0}$ and $M^{\prime}=M$.
If M is coverable in N by some marking $M_{1} \geq M$, then we can also reach M_{1} in N^{\prime}, and fire the additional transitions to reduce tokens until we reach $M=M^{\prime}$ in N^{\prime}.

On the other hand, if M^{\prime} is reachable in N^{\prime}, then we can execute the sequence to reach M^{\prime} without firing the additional transitions. That sequence is also enabled in N at M_{0} and leads to a marking $M_{1} \geq M^{\prime}=M$, so M is coverable in N.
Formal answer (given for clarity):
Define the net $N^{\prime}=\left(S^{\prime}, T^{\prime}, F^{\prime}\right)$ with $S^{\prime}=S, T^{\prime}=T \uplus\left\{t_{s} \mid s \in S\right\}$ and $F^{\prime}=F \cup\left\{\left(s, t_{s}\right) \mid s \in S\right\}$ and the markings $M_{0}^{\prime}=M_{0}$ and $M^{\prime}=M$. Below is a sketch of the construction:

If M is coverable in N from M_{0}, then there is a marking M_{1} and an occurrence sequence σ with $M_{0} \xrightarrow{\sigma} M_{1}$ in N and $M_{1} \geq M$. Then also $M_{0}^{\prime} \xrightarrow{\sigma} M_{1}$ in N^{\prime}. From M_{1}, for each $s \in S$, we can fire t_{s} exactly $M_{1}(s)-M(s)$ times. This yields our target marking $M=M^{\prime}$, so M^{\prime} is reachable in N^{\prime} from M_{0}^{\prime}.
On the other hand, if M^{\prime} is reachable in N^{\prime} from M_{0}^{\prime}, then there is an occurrence sequence σ with $M_{0}^{\prime} \xrightarrow{\sigma} M^{\prime}$ in N^{\prime}. Let τ be the occurrence sequence obtained from σ by removing all occurrences of t_{s} for $s \in S$. As every t_{s} only removes tokens in N^{\prime}, by the monotonicity property of Petri nets, τ is also enabled at M_{0}^{\prime} in N^{\prime} and as τ only contains transitions from T, it is also enabled at M_{0} in N. This yields $M_{0} \xrightarrow{\tau} M_{1}$ in N for some marking M_{1} with $M_{1} \geq M^{\prime}=M$, so M is coverable in N from M_{0}.

Exercise 3

(a) Exhibit a net having a positive T-invariant but no positive S-invariant.
(b) Exhibit a net having a positive S-invariant but no positive T-invariant.
(c) Exhibit a net with a minimal siphon containing two input places of the same transition.

Solution:

(a) In the following net, $J=(1,1)$ is a positive T-invariant, but any S-invariant I has to satisfy $I\left(s_{1}\right)=0$, therefore there is no positive S -invariant.

(b) In the following net, $I=(1,1)$ is a positive S -invariant, but any T-invariant J has to satisfy $J\left(t_{1}\right)=0$, therefore there is no positive T-invariant.

(c) In the following net, $R=\left\{s_{1}, s_{2}\right\}$ is a minimal siphon with $\left|R \cap{ }^{\bullet} t_{3}\right|=2$.

Exercise 4

Consider the following Petri net:

(a) Give a basis of the space of S-invariants of the net.
(b) Find all three minimal traps of the net.
(c) Use (a) and (b) to show that s_{2} and s_{5} are mutually exclusive, i.e. there is no reachable marking M with $M\left(s_{2}\right) \geq 1$ and $M\left(s_{5}\right) \geq 1$.

Solution:

(a) Any S-invariant I needs to satisfy:

$$
\begin{aligned}
& t_{1}: \quad I\left(s_{2}\right)=I\left(s_{1}\right) \\
& t_{2}: \quad I\left(s_{1}\right)+I\left(s_{3}\right)=I\left(s_{2}\right)+I\left(s_{4}\right) \\
& t_{3}: \quad I\left(s_{3}\right)=I\left(s_{4}\right) \\
& t_{4}: \quad I\left(s_{1}\right)+I\left(s_{3}\right)=I\left(s_{1}\right)+I\left(s_{5}\right) \\
& t_{5}: \quad I\left(s_{5}\right)=I\left(s_{4}\right)
\end{aligned}
$$

From these constraints, we can derive $I\left(s_{1}\right)=I\left(s_{2}\right)$ and $I\left(s_{3}\right)=I\left(s_{4}\right)=I\left(s_{5}\right)$. Any S-invariant is defined by specifying $I\left(s_{1}\right)$ and $I\left(s_{3}\right)$, giving us two invariants for the basis, for instance $I_{1}=(1,1,0,0,0)$ and $I_{2}=(0,0,1,1,1)$.
(b) For any semi-positive S-invariant I, the set of places s with $I(s)>0$ form a trap. From I_{1} and I_{2}, we obtain the traps $R_{1}=\left\{s_{1}, s_{2}\right\}$ and $R_{2}=\left\{s_{3}, s_{4}, s_{5}\right\}$, which are already minimal.
The third trap can be found with the trap constraints, as any trap R needs to satisfy:

$$
\begin{aligned}
t_{1}: & s_{2} \in R \Longrightarrow s_{1} \in R \\
t_{2}: & s_{1} \in R \vee s_{3} \in R \Longrightarrow s_{2} \in R \vee s_{4} \in R \\
t_{3}: & s_{4} \in R \Longrightarrow s_{3} \in R \\
t_{4}: & s_{1} \in R \vee s_{3} \in R \Longrightarrow s_{1} \in R \vee s_{5} \in R \\
t_{5}: & s_{5} \in R \Longrightarrow s_{4} \in R
\end{aligned}
$$

By the implications, we see that if s_{2} or s_{5} are in the trap, then we obtain a superset of R_{1} or R_{2}. Therefore, if we look for a trap without s_{2} and s_{5}, then the only satisfying assignment for a proper trap is $R_{3}=\left\{s_{1}, s_{3}, s_{4}\right\}$, which is the last minimal trap.
(c) Let M be a reachable marking. From I_{1} and I_{2}, we obtain the positive S-invariant $I_{3}=I_{1}+I_{2}=(1,1,1,1,1)$, and as $M \cdot I_{3}=M_{0} \cdot I_{3}$, we get $M\left(s_{1}\right)+M\left(s_{2}\right)+M\left(s_{3}\right)+M\left(s_{4}\right)+M\left(s_{5}\right)=2$. From R_{3}, as $M_{0}\left(R_{3}\right) \geq 1$, we get $M(R) \geq 1$ and therefore $M\left(s_{1}\right)+M\left(s_{3}\right)+M\left(s_{4}\right) \geq 1$. In combination, we get $M\left(s_{2}\right)+M\left(s_{5}\right) \leq 1$, which shows mutual exclusion.

Exercise 5

(a) Prove: If $\left(N, M_{0}\right)$ is a live and bounded Petri net, then N has a positive T-invariant.
(b) Prove: If $\left(N, M_{0}\right)$ is a live and bounded free-choice system and $M_{0}^{\prime} \geq M_{0}$, then $\left(N, M_{0}^{\prime}\right)$ is also live and bounded.
(c) Prove: Let N be a net and M a marking of N. The equation $M=\mathbf{N} \cdot X$ has a nonnegative integer solution $X: T \rightarrow \mathbb{N}$ iff there is marking M_{0} of N such that $M+M_{0}$ is reachable from M_{0} in N.
Note: $M+M_{0}$ is defined as the marking with $\left(M+M_{0}\right)(s)=M(s)+M_{0}(s)$.

Solution:

(a) Let $\left(N, M_{0}\right)$ be a live and bounded Petri net. By liveness there is an infinite occurrence sequence $\sigma_{1} \sigma_{2} \sigma_{3} \ldots$ such that every σ_{i} is a finite occurrence sequence containing all transitions of N. We have

$$
M_{0} \xrightarrow{\sigma_{1}} M_{1} \xrightarrow{\sigma_{2}} M_{2} \xrightarrow{\sigma_{3}} \cdots .
$$

By boundedness there are indices $i<j$ such that $M_{i}=M_{j}$. So the sequence $\sigma_{i+1} \ldots \sigma_{j}$ satisfies

$$
M_{i} \xrightarrow{\sigma_{i+1} \ldots \sigma_{j}} M_{i}
$$

and so $J=\vec{\sigma}_{i+1}+\cdots+\vec{\sigma}_{j}$ is a T-invariant of N. Further, J is positive because every transition occurs at least once in $\sigma_{i+1} \ldots \sigma_{j}$.
(b) Let $\left(N, M_{0}\right)$ be a live and bounded free-choice system and $M_{0}^{\prime} \geq M_{0}$.

By Commoner's Liveness Theorem, every proper siphon of N contains a trap marked at M_{0}. As $M_{0}^{\prime} \geq M_{0}$, every such trap is also marked at M_{0}^{\prime}, therefore the system (N, M_{0}^{\prime}) is also live.
By Hack's Boundedness Theorem, every place of N belongs to an S-component, therefore (N, M_{0}^{\prime}) is also bounded.
$(c)(\Rightarrow)$: Let X be a nonnegative integer solution of $M=\mathbf{N} \cdot X$. Then let M_{0} be a marking sufficiently large to consecutively enable all transitions $t \in T$ exactly $X(t)$ times in some order. Clearly, such a marking exists. Let σ be a corresponding occurrence sequence enabled at M_{0} with $\vec{\sigma}=X$. We then have $M_{0} \xrightarrow{\sigma} M_{1}$ for some marking M_{1} and with the marking equation, we have $M_{1}=M_{0}+\mathbf{N} \cdot \vec{\sigma}=M_{0}+\mathbf{N} \cdot X=M_{0}+M$, so $M_{0}+M$ is reachable from M_{0}.
(\Leftarrow) : Let M_{0} be a marking of N such that $M+M_{0}$ is reachable from M_{0} in N. Then there is an occurence sequence σ with $M_{0} \xrightarrow{\sigma} M+M_{0}$. With the marking equation, we have $M+M_{0}=M_{0}+\mathbf{N} \cdot \vec{\sigma}$ and, by subtracting M_{0} from both sides, $M=\mathbf{N} \cdot \vec{\sigma}$. So $X:=\vec{\sigma}$ is a nonnegative integer solution of $M=\mathbf{N} \cdot X$.

