Solution

Petri nets – Homework 8

Discussed on Thursday 2nd July, 2015.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 8.1 Commoner’s Liveness Theorem for general Petri nets

(a) Exhibit a non-live Petri net (N,M_0) where every proper siphon contains a trap marked at M_0.
(b) Exhibit a live Petri net (N,M_0) with a proper siphon R of N that does not contain a trap marked at M_0.

Solution:
(a) The following Petri net is non-live, as t_3 is never enabled, and has $\{s_1, s_2\}$ as its only proper siphon, which contains the trap $\{s_1, s_2\}$ marked at M_0.

(b) The following Petri net is live, and the siphon $R = \{s_1, s_2, s_3\}$ contains no trap initially marked, as the net has no proper traps.

Exercise 8.2 Hack’s Boundedness Theorem for general Petri nets

A structural component of Petri nets are S-components (Definition 5.3.5 in the script):

Definition 8.2.1. [S-component] Let $N = (S,T,F)$ be a net. A subnet $N' = (S',T',F')$ of N is an S-component of N if
1. $T' = \bullet S' \cup S^{\bullet}$ (where $\bullet s = \{t \in T \mid (t,s) \in F\}$, and analogously for s^{\bullet}).
2. N' is a strongly connected S-net.

The fundamental property of S-components is (Proposition 5.3.6 in the script):

Proposition 8.2.1. Let (N,M_0) be a Petri net and let $N' = (S',T',F')$ be an S-component of N. Then $M_0(S') = M(S')$ for every marking M reachable from M_0.

(a) Prove: Let (N,M_0) be a Petri net. If every place of N belongs to an S-component, then (N,M_0) is bounded.
(b) Exhibit a live and bounded Petri net (N,M_0) with a place s of N that does not belong to any S-component.
Solution:

(a) Let \(s \) be a place of \(N \) and \(N' = (S', T', F') \) an S-component with \(s \in S' \). For all reachable markings \(M \), we have \(M(s) \leq M(S') = M_0(S) \), so \(s \) is bounded. As all places are bounded, \((N, M_0) \) is also bounded.

(b) The following Petri net is live and bounded, but \(s_2 \) does not belong to any S-component \(N' = (S', T', F') \), as that would imply \(t_1, t_2, t_3, t_4 \in T' \), which further implies \(s_3 \in S' \), but then \(N' \) is not an S-net.

\[\text{Exercise 8.3} \quad \text{Minimal path length in 1-bounded Petri nets} \]

For each \(n \in \mathbb{N} \), give a live and 1-bounded Petri net \((N, M_0) \) and a marking \(M \) of \(N \) such that the size of the net grows linearly, but the length of the minimal occurrence sequence \(\sigma \) with \(M_0 \xrightarrow{\sigma} M \) grows exponentially, i.e., \(|\sigma| \in \Omega(2^n) \).

\[\text{Hint:} \] Try to model a counter with a binary encoding that counts incrementally from 0 to \(2^n \) by firing one or more transitions for each step.

\[\text{Solution:} \] We encode a binary number \(b = b_1b_2\ldots b_n \) with the places \(b_i \) and \(\overline{b_i} \) for \(1 \leq i \leq n \) to denote if \(b_i \) is 0 or 1. We also add places \(c_i \) and \(\overline{c_i} \) for \(1 \leq i \leq n-1 \) to denote if there is a carry bit from \(b_i \) to \(b_i + 1 \). We add transitions to increase each \(b_i \) if \(i = 1 \) or there is a carry at \(i - 1 \). The transition either moves the token from \(b_i \) to \(\overline{b_i} \) or resets it and adds a carry to \(c_i \). The initial marking \(M_0 \) puts a token on each \(b_i \) and \(\overline{c_i} \) and the target marking \(M \) puts a token on each \(b_i \) and \(\overline{c_i} \). The initial marking represents the number \(b = 0 \) and the final marking \(b = 2^n - 1 \), and each transition increases \(b \) by at most 1, resulting in a minimal path length of at least \(2^n - 1 \).

For example, for \(n = 3 \), we have the following Petri net:

\[\text{Exercise 8.4} \quad \text{Reducing SAT to reachability in free-choice systems} \]

Reduce the satisifiability problem for boolean formulas in conjunctive normal form to the reachability problem in free-choice systems.

For that, give a polynomial time translation that, for a given formula \(\varphi \), produces a free-choice system \((N, M_0) \) and a marking \(M \) such that \(\varphi \) is satisfiable iff \(M \) is reachable in \((N, M_0) \). Describe your reduction informally and give the resulting Petri net when applying it to the formula below.

\[\varphi = (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor \neg x_3) \]

\[\text{Solution:} \] We use places \(x_i \) for each variable and transitions to choose their assignment. Places \(c_j \) for each clause get marked if the assignment makes that clause true. A transition for each clause can remove additional tokens from the clause places. The target marking \(M \) is given by \(M(c_j) = 1 \) for each clause place \(c_j \) and \(M(s) = 0 \) for all other places \(s \). \(M \) is reachable if and only if all clauses can be made true by an assignment of the variables, i.e., \(\varphi \) is satisfiable.
For the given formula, we get the following free-choice system and the target marking with one token in c_1 and c_2 each and no tokens elsewhere.

$$x_1=0 \hspace{1cm} x_2=0 \hspace{1cm} x_3=0$$

Exercise 8.5 Simulating a bounded stack

A bounded stack is a tuple $K = (\Gamma, k)$, where Γ is the stack alphabet and k is the stack size. A configuration of the stack is a sequence $\gamma \in \Gamma^*$. On a stack, we can perform the following actions:

- Push an element $c \in \Gamma$ on the top of the stack if the stack has less than k elements.
- Pop an element $c \in \Gamma$ from the stack if the top element is c.
- Assert that the stack is empty if the stack has no elements.

More formally, for a bounded stack (Γ, k), we have the actions $A_\Gamma = \{\text{push}_c, \text{pop}_c \mid c \in \Gamma\} \cup \{\text{empty}\}$ which induce the following transition rules on the configurations:

$$\epsilon \xrightarrow{\text{empty}} \epsilon$$

$$\gamma \xrightarrow{\text{push}_c} \gamma c \text{ for } c \in \Gamma, \gamma \in \Gamma^*, |\gamma| < k$$

$$\gamma c \xrightarrow{\text{pop}_c} \gamma \text{ for } c \in \Gamma, \gamma \in \Gamma^*$$

A sequence of actions $w = a_1a_2\ldots a_n \in A_\Gamma^*$ is a computation of a stack K if there exist configurations $\gamma_1\gamma_2\ldots\gamma_n$ such that $\epsilon \xrightarrow{a_1} \gamma_1 \xrightarrow{a_2} \gamma_2 \xrightarrow{\ldots} \gamma_{n-1} \xrightarrow{a_n} \gamma_n$ is a transition sequence according to the above transition rules. For example, with $K = (\{a,b\}, 2)$, the sequence empty push$_a$ push$_b$ pop$_b$ pop$_a$ empty push$_a$ is a computation with the intermediate configurations:

$$\epsilon \xrightarrow{\text{empty}} \epsilon \xrightarrow{\text{push}_a} a \xrightarrow{\text{push}_b} ab \xrightarrow{\text{pop}_b} a \xrightarrow{\text{pop}_a} \epsilon \xrightarrow{\text{push}_a} b.$$
For $\Gamma = \{a, b\}$ and a given k, give a construction to produce a Petri net that simulates the bounded stack $K = (\{a, b\}, k)$. Give the resulting Petri net when applying the construction with $k = 3$. Describe informally how the Petri net changes as k increases. Ensure that the size of the Petri net only grows linearly with k.

Solution:

For each position $1 \leq i \leq k$ of the stack, we represent the state with four places: a_i and b_i, which are marked if there is an a or b in this position, and e_i and f_i, which are marked if the position is empty or full, respectively.

Then we add transitions with the labels push_a, pop_a, push_b and pop_b, which either push the corresponding element if the position is empty, or pop it if the element is at that position and the position is full.

With that, for one position, we get the following subnet. The actual names of the transitions are irrelevant and not shown.

When combining several positions, we need to ensure that elements are pushed and pulled on and from the top of the stack. A transition labeled push_c at position i should only be enabled if i is empty and either $i = 1$ or position $i - 1$ is full. A transition labeled pop_c at position i should only be enabled if i is full, the element c is at that position and either $i = k$ or position $i + 1$ is empty. That way, if position i is empty, then for all $j > i$, j is also empty, and if position i is full, then for all $j < i$, j is also full.

Finally, we add a transition labeled empty, which checks if position 1 is empty. This gives us the following net for $k = 3$:

An alternative solution is to encode the index of the top of the stack with places s_i for $0 \leq i \leq k$. We can only push or pop at a certain position if it is the top of the stack. This gives us the following solution for $k = 3$: