
Technische Universität München (I7) Summer term 2015
Prof. J. Esparza / P. Meyer Thursday 2nd July, 2015

Solution

Petri nets – Homework 8

Discussed on Thursday 2nd July, 2015.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 8.1 Commoner’s Liveness Theorem for general Petri nets

(a) Exhibit a non-live Petri net (N,M0) where every proper siphon contains a trap marked at M0.

(b) Exhibit a live Petri net (N,M0) with a proper siphon R of N that does not contain a trap marked at M0.

Solution:

(a) The following Petri net is non-live, as t3 is never enabled, and has {s1, s2} as its only proper siphon, which contains the
trap {s1, s2} marked at M0.

s1 s2

t1

t2

t3

(b) The following Petri net is live, and the siphon R = {s1, s2, s3} contains no trap initially marked, as the net has no proper
traps.

s1

s2 s3

t1 t2

t3

Exercise 8.2 Hack’s Boundedness Theorem for general Petri nets

A structural component of Petri nets are S-components (Definition 5.3.5 in the script):

Definition 8.2.1. [S-component] Let N = (S, T, F ) be a net. A subnet N ′ = (S′, T ′, F ′) of N is an S-component of N if

1. T ′ = •S′ ∪ S′• (where •s = {t ∈ T | (t, s) ∈ F}, and analogously for s•).

2. N ′ is a strongly connected S-net.

The fundamental propery of S-components is (Proposition 5.3.6 in the script):

Proposition 8.2.1. Let (N,M0) be a Petri net and let N ′ = (S′, T ′, F ′) be an S-component of N . Then M0(S′) = M(S′) for
every marking M reachable from M0.

(a) Prove: Let (N,M0) be a Petri net. If every place of N belongs to an S-component, then (N,M0) is bounded.

(b) Exhibit a live and bounded Petri net (N,M0) with a place s of N that does not belong to any S-component.



Solution:

(a) Let s be a place of N and N ′ = (S′, T ′, F ′) an S-component with s ∈ S′. For all reachable markings M , we have
M(s) ≤M(S′) = M0(S), so s is bounded. As all places are bounded, (N,M0) is also bounded.

(b) The following Petri net is live and bounded, but s2 does not belong to any S-component N ′ = (S′, T ′, F ′), as that would
imply t1, t2, t3, t4 ∈ T ′, which further implies s3 ∈ S′, but then N ′ is not an S-net.

s1 s2 s3

t1

t2

t3

t4

Exercise 8.3 Minimal path length in 1-bounded Petri nets

For each n ∈ N, give a live and 1-bounded Petri net (N,M0) and a marking M of N such that the size of the net grows linearly,

but the length of the minimal occurrence sequence σ with M0
σ−→M grows exponentially, i.e., |σ| ∈ Ω(2n).

Hint : Try to model a counter with a binary encoding that counts incrementally from 0 to 2n by firing one or more transitions
for each step.

Solution:

We encode a binary number b = b1b2 . . . bn with the places bi and bi for 1 ≤ i ≤ n to denote if bi is 0 or 1. We also add places
ci and ci for 1 ≤ i ≤ n− 1 to denote if there is a carry bit from bi to bi + 1. We add transitions to increase each bi if i = 1 or
there is a carry at i − 1. The transition either moves the token from bi to bi or resets it and adds a carry to ci. The initial
marking M0 puts a token on each bi and ci and the target marking M puts a token on each bi and ci. The initial marking
represents the number b = 0 and the final marking b = 2n − 1, and each transition increases b by at most 1, resulting in a
minimal path length of at least 2n − 1.

For example, for n = 3, we have the following Petri net:

b1

b1

c1

c1

b2

b2

c2

c2

b3

b3

t1 u1 t2 u2 t3 u3

Exercise 8.4 Reducing SAT to reachability in free-choice systems

Reduce the satisfiability problem for boolean formulas in conjunctive normal form to the reachability problem in free-choice
systems.

For that, give a polynomial time translation that, for a given formula ϕ, produces a free-choice system (N,M0) and a marking
M such that ϕ is satisfiable iff M is reachable in (N,M0). Describe your reduction informally and give the resulting Petri net
when applying it to the formula below.

ϕ = (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3)

Solution:

We use places xi for each variable and transitions to choose their assignment. Places cj for each clause get marked if the
assignment makes that clause true. A transition for each clause can remove additional tokens from the clause places. The
target marking M is given by M(cj) = 1 for each clause place cj and M(s) = 0 for all other places s. M is reachable if and
only if all clauses can be made true by an assignment of the variables, i.e., ϕ is satisfiable.



For the given formula, we get the following free-choice system and the target marking with one token in c1 and c2 each and no
tokens elsewhere.

x1 x2 x3

c1 c2

x1=0 x1=1 x2=0 x2=1 x3=0 x3=1

t1 t2

Exercise 8.5 Simulating a bounded stack

A bounded stack is a tuple K = (Γ, k), where Γ is the stack alphabet and k is the stack size. A configuration of the stack is a
sequence γ ∈ Γ∗. On a stack, we can perform the following actions:

• Push an element c ∈ Γ on the top of the stack if the stack has less than k elements.

• Pop an element c ∈ Γ from the stack if the top element is c.

• Assert that the stack is empty if the stack has no elements.

More formally, for a bounded stack (Γ, k), we have the actions AΓ = {pushc, popc | c ∈ Γ}∪{empty} which induce the following
transitions rules on the configurations:

ε
empty−−−−→ ε

γ
pushc−−−−→ γc for c ∈ Γ, γ ∈ Γ∗, |γ| < k

γc
popc−−−−→ γ for c ∈ Γ, γ ∈ Γ∗

A sequence of actions w = a1a2 . . . an ∈ A∗Γ is a computation of a stack K if there exist configurations γ1γ2 . . . γn such

that ε
a1−→ γ1

a2−→ γ2 . . . γn−1
an−−→ γn is a transition sequence according to the above transition rules. For example, with

K = ({a, b}, 2), the sequence empty pusha pushb popb popa empty pushb is a computation with the intermediate configurations

ε
empty−−−−→ ε

pusha−−−−→ a
pushb−−−−→ ab

popb−−−→ a
popa−−−→ ε

empty−−−−→ ε
pushb−−−−→ b.

A Petri net (N,M0) together with a labeling function hl : T → AΓ ∪ {τ} simulates the computations of a bounded stack
K = (Γ, k) if, with the homomorphism h : T ∗ → A∗Γ defined by

h(ε) = ε

h(t) = ε if hl(t) = τ

h(t) = hl(t) if hl(t) ∈ AΓ

h(σt) = h(σ)h(t),

we have: {h(σ) | ∃M : M0
σ−→ M} = {w ∈ A∗Γ | w is a computation of K}. Basically, some transitions of the Petri net

correspond to actions of the stack, and the occurrence sequences of the net projected onto the actions of these transitions
correspond to the computations of the stack.

As an instance, if Γ = {a}, for each k, we can give the following Petri net (with weights) which simulates a stack K = ({a}, k).
The label of each transition is given inside the box for the transition.

s1

k

s2

pusha

t1

popa

t2

empty

t3

k k



For Γ = {a, b} and a given k, give a construction to produce a Petri net that simulates the bounded stack K = ({a, b}, k).
Give the resulting Petri net when applying the construction with k = 3. Describe informally how the Petri net changes as k
increases. Ensure that the size of the Petri net only grows linearly with k.

Solution:

For each position 1 ≤ i ≤ k of the stack, we represent the state with four places: ai and bi, which are marked if there is an a
or b in this position, and ei and fi, which are marked if the position is empty or full, respectively.

Then we add transitions with the labels pusha, popa, pushb and popb, which either push the corresponding element if the
position is empty, or pop it if the element is at that position and the position is full.

With that, for one position, we get the following subnet. The actual names of the transitions are irrelevant and not shown.

ai

bi

ei fi

pusha popa

pushb popb

When combining several positions, we need to ensure that elements are pushed and pulled on and from the top of the stack. A
transition labeled pushc at position i should only be enabled if i is empty and either i = 1 or position i− 1 is full. A transition
labeled popc at position i should only be enabled if i is full, the element c is at that position and either i = k or position i+ 1
is empty. That way, if position i is empty, then for all j > i, j is also empty, and if position i is full, then for all j < i, j is also
full.

Finally, we add a transition labeled empty, which checks if position 1 is empty. This gives us the following net for k = 3:

a1

b1

e1 f1

a2

b2

e2 f2

a3

b3

e3 f3empty

pusha popa

pushb popb

pusha popa

pushb popb

pusha popa

pushb popb

An alternative solution is to encode the index of the top of the stack with places si for 0 ≤ i ≤ k. We can only push or pop at
a certain position if it is the top of the stack. This gives us the following solution for k = 3:

s0 s1 s2 s3

a1

b1

a2

b2

a3

b3

empty

pusha popa

pushb popb

pusha popa

pushb popb

pusha popa

pushb popb


