Solution

Petri nets – Homework 7

Discussed on Thursday 25th June, 2015.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 7.1 Boundedness and liveness in S/T-systems

Show the following:
(a) An S-system \((N, M_0)\) is bounded for any \(M_0\).
(b) If \((N, M_0)\) is a live S-system and \(M_0' \geq M_0\), then \((N, M_0')\) is also live.
(c) If \((N, M_0)\) is a live and bounded T-system, then \((N, M_0')\) is also bounded for any \(M_0'\).
(d) If \((N, M_0)\) is a live T-system and \(M_0' \geq M_0\), then \((N, M_0')\) is also live.

Exhibit Petri nets for the following:
(e) Give a bounded T-system \((N, M_0)\) and a marking \(M_0' \geq M_0\) such that \((N, M_0')\) is not bounded.
(f) Give a 1-bounded S-system \((N, M_0)\) where \(M_0(S) > 1\).
(g) Give a live and 1-bounded T-system \((N, M_0)\) with a circuit \(\gamma\) where \(M_0(\gamma) > 1\).

Solution:
(a) By the fundamental property of S-systems, for every reachable marking, we have \(M(S) = M_0(S)\) and therefore \(M(s) \leq M_0(S)\) for all \(s \in S\).
(b) By the liveness theorem for S-systems, \((N, M_0)\) is live iff \(N\) is strongly connected and \(M_0(S) > 0\), and as \(M_0'(S) \geq M_0(S) > 0\), \((N, M_0')\) is also live.
(c) A live T-system is bounded iff \(N\) is strongly connected, therefore if \((N, M_0)\) is bounded, then \((N, M_0')\) is also bounded.
(d) By the liveness theorem for T-systems, \((N, M_0)\) is live iff \(M_0(\gamma) > 0\) for every circuit \(\gamma\), and as \(M_0'(\gamma) \geq M_0(\gamma) > 0\), \((N, M_0')\) is also live.
(e) Due to (c), the system needs to be non-live. The following Petri net without any tokens is a non-live, bounded T-system. By adding the blue token to \(s_1\), the net becomes unbounded.

(f) Due to the boundedness theorem for S-systems, the system needs to be non-live. The following Petri net is a non-live, 1-bounded S-system with \(M_0(S) > 1\):
In the following live T-system, the inner circuit $s_1s_2s_3$ contains 2 tokens, however each place is 1-bounded due to the outer circuits.

Exercise 7.2 Circuits in T-systems

Consider the T-system (N, M_0) below.

(a) Find all circuits of the net.
(b) Use the circuits to decide if the system is live.
(c) For each place s, determine the bound of s by analyzing the circuits containing s.
(d) Apply the construction from the proof of Genrich’s Theorem (Theorem 5.2.9) to find a marking M'_0 such that (N, M'_0) is live and 1-bounded.

Solution:

(a) The circuits of the net are $\gamma_1 = s_1s_5$, $\gamma_2 = s_2s_6s_4$ and $\gamma_3 = s_2s_6s_7s_3$.
(b) We have $M_0(\gamma_1) = 1$, $M_0(\gamma_2) = 1$ and $M_0(\gamma_3) = 2$. Each circuit is initially marked, so the system is live.
(c) The system is bounded, as each place belongs to some circuit. The bound of each place s is equal to the minimal number of tokens among the circuits where s is contained. With that, we get the following bounds:

- s_1 : contained in γ_1 with $M_0(\gamma_1) = 1$, so the bound is 1.
- s_2, s_4, s_6 : contained in γ_2 with $M_0(\gamma_2) = 1$ and in γ_3 with $M_0(\gamma_3) = 2$, so the bound is $\min(1, 2) = 1$.
- s_3, s_7 : contained in γ_3 with $M_0(\gamma_3) = 2$, so the bound is 2.

(d) The system is not 1-bounded, as the bound of s_3 and s_7 is 2. By firing $M_0 \xrightarrow{t_5} M$, we obtain a marking M with $M(s_7) = 2$. Define the marking L by $L(s_7) = 1$ and $L(s) = M(s)$ for all other s. By construction, (N, L) is still live and bounded. Now for the circuit γ_3, we have $L(\gamma_3) = 1$, so (N, L) is 1-bounded. We have the marking $M'_0 = L = (1, 0, 0, 1, 0, 1)$.

Exercise 7.3 Paths and transitions in T-systems

For a live T-system (N, M_0), with the reachability theorem (Theorem 5.2.7), we have that a marking M is reachable iff $M_0 \sim M$. From the proof, we can easily infer the following corollary:

Corollary 7.3.1. Let (N, M_0) be a live T-system, M a marking of N and $X : T \rightarrow N$ a vector such that $M = M_0 + N \cdot X$. There is an occurrence sequence $M_0 \xrightarrow{\sigma} M$ such that $\sigma = X$.

For a live T-system (N, M_0), use this corollary to show the following. Remember that $J = (1, \ldots, 1)$ is a T-invariant of any T-system.

(a) There is an occurrence sequence σ with $M_0 \xrightarrow{\sigma} M_0$ such that σ contains every transition of N exactly once.
(b) For a reachable marking M, there exists an occurrence sequence σ with $M_0 \xrightarrow{\sigma} M$ such that σ does not contain all transitions of N.

Solution:

(a) For the T-invariant $J = (1, \ldots, 1)$, we have $M_0 + N \cdot J = M_0$. With the corollary, there is an occurrence sequence $M_0 \xrightarrow{\sigma} M_0$ with $\bar{\sigma} = J$, so σ contains every transition exactly once. Note that this result implies that each transitions can be fired within a sequence of length at most $|T|$.

(b) Let σ be a minimal occurrence sequence with $M_0 \xrightarrow{\sigma} M$. Assume that σ contains every transition of N. Then with $J = (1, \ldots, 1)$, we have $\bar{\sigma} - J \geq 0$ and

$$M_0 + N \cdot (\bar{\sigma} - J) = M_0 + N \cdot \bar{\sigma} - N \cdot J \equiv 0 \equiv M_0 + N \cdot \bar{\sigma} = M,$$

so there is a transition sequence τ with $\bar{\tau} = \bar{\sigma} - J$ and $M_0 \xrightarrow{\tau} M$, which contradicts the minimality of σ.

Exercise 7.4 Path length in T-systems

For each $n \in \mathbb{N}$, give a 1-bounded T-system (N, M_0) with n transitions and a reachable marking M such that the minimal occurrence sequence σ with $M_0 \xrightarrow{\sigma} M$ has a length of $n(n-1)/2$.

Hint: First try find a Petri net and a marking for $n = 3$, where the minimal sequence has length 3. For this a net with 4 places suffices. Then try to generalize your solution.

Solution:

For $n = 3$, we can take the following net with the marking $M = (0, 0, 1, 1)$. To reach this marking, we need to fire t_1 and t_2 to mark s_3 and s_4. However, firing t_2 undoes the effect of t_1 on s_3, so we need to fire t_1 twice. The minimal sequence is then $\sigma = t_1 t_2 t_1$ of length 3.

This construction can be repeated for arbitrary n, as shown in the following sketch of a Petri net. To reach the marking M with $M(s_{i,1}) = 0$ and $M(s_{i,2}) = 1$ for all $1 \leq i \leq n - 1$ with a minimal sequence, we need to fire $\sigma = t_1 t_2 \ldots t_{n-1} t_1 t_2 \ldots t_{n-2} \ldots t_1$, which has a length of $\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$.